Metamath Proof Explorer


Theorem isrprm

Description: Property for P to be a prime element in the ring R . (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses isrprm.1 𝐵 = ( Base ‘ 𝑅 )
isrprm.2 𝑈 = ( Unit ‘ 𝑅 )
isrprm.3 0 = ( 0g𝑅 )
isrprm.4 = ( ∥r𝑅 )
isrprm.5 · = ( .r𝑅 )
Assertion isrprm ( 𝑅𝑉 → ( 𝑃 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑃 ( 𝑥 · 𝑦 ) → ( 𝑃 𝑥𝑃 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isrprm.1 𝐵 = ( Base ‘ 𝑅 )
2 isrprm.2 𝑈 = ( Unit ‘ 𝑅 )
3 isrprm.3 0 = ( 0g𝑅 )
4 isrprm.4 = ( ∥r𝑅 )
5 isrprm.5 · = ( .r𝑅 )
6 1 2 3 5 4 rprmval ( 𝑅𝑉 → ( RPrime ‘ 𝑅 ) = { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥𝐵𝑦𝐵 ( 𝑝 ( 𝑥 · 𝑦 ) → ( 𝑝 𝑥𝑝 𝑦 ) ) } )
7 6 eleq2d ( 𝑅𝑉 → ( 𝑃 ∈ ( RPrime ‘ 𝑅 ) ↔ 𝑃 ∈ { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥𝐵𝑦𝐵 ( 𝑝 ( 𝑥 · 𝑦 ) → ( 𝑝 𝑥𝑝 𝑦 ) ) } ) )
8 breq1 ( 𝑝 = 𝑃 → ( 𝑝 ( 𝑥 · 𝑦 ) ↔ 𝑃 ( 𝑥 · 𝑦 ) ) )
9 breq1 ( 𝑝 = 𝑃 → ( 𝑝 𝑥𝑃 𝑥 ) )
10 breq1 ( 𝑝 = 𝑃 → ( 𝑝 𝑦𝑃 𝑦 ) )
11 9 10 orbi12d ( 𝑝 = 𝑃 → ( ( 𝑝 𝑥𝑝 𝑦 ) ↔ ( 𝑃 𝑥𝑃 𝑦 ) ) )
12 8 11 imbi12d ( 𝑝 = 𝑃 → ( ( 𝑝 ( 𝑥 · 𝑦 ) → ( 𝑝 𝑥𝑝 𝑦 ) ) ↔ ( 𝑃 ( 𝑥 · 𝑦 ) → ( 𝑃 𝑥𝑃 𝑦 ) ) ) )
13 12 2ralbidv ( 𝑝 = 𝑃 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑝 ( 𝑥 · 𝑦 ) → ( 𝑝 𝑥𝑝 𝑦 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑃 ( 𝑥 · 𝑦 ) → ( 𝑃 𝑥𝑃 𝑦 ) ) ) )
14 13 elrab ( 𝑃 ∈ { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥𝐵𝑦𝐵 ( 𝑝 ( 𝑥 · 𝑦 ) → ( 𝑝 𝑥𝑝 𝑦 ) ) } ↔ ( 𝑃 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑃 ( 𝑥 · 𝑦 ) → ( 𝑃 𝑥𝑃 𝑦 ) ) ) )
15 7 14 bitrdi ( 𝑅𝑉 → ( 𝑃 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑃 ( 𝑥 · 𝑦 ) → ( 𝑃 𝑥𝑃 𝑦 ) ) ) ) )