Step |
Hyp |
Ref |
Expression |
1 |
|
isrprm.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isrprm.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
isrprm.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
isrprm.4 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
5 |
|
isrprm.5 |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
1 2 3 5 4
|
rprmval |
⊢ ( 𝑅 ∈ 𝑉 → ( RPrime ‘ 𝑅 ) = { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ) |
7 |
6
|
eleq2d |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑃 ∈ ( RPrime ‘ 𝑅 ) ↔ 𝑃 ∈ { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ) ) |
8 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ ( 𝑥 · 𝑦 ) ↔ 𝑃 ∥ ( 𝑥 · 𝑦 ) ) ) |
9 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ 𝑥 ↔ 𝑃 ∥ 𝑥 ) ) |
10 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ 𝑦 ↔ 𝑃 ∥ 𝑦 ) ) |
11 |
9 10
|
orbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ↔ ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
12 |
8 11
|
imbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ↔ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
14 |
13
|
elrab |
⊢ ( 𝑃 ∈ { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ↔ ( 𝑃 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
15 |
7 14
|
bitrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑃 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) ) |