| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rprmval.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
rprmval.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
rprmval.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
rprmval.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 6 |
|
df-rprm |
⊢ RPrime = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } ) |
| 7 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) |
| 8 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑏 = ( Base ‘ 𝑟 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑏 = ( Base ‘ 𝑅 ) ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑏 = 𝐵 ) |
| 13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
| 14 |
13 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 15 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
15 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 17 |
16
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( 0g ‘ 𝑟 ) } = { 0 } ) |
| 18 |
14 17
|
uneq12d |
⊢ ( 𝑟 = 𝑅 → ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) = ( 𝑈 ∪ { 0 } ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) = ( 𝑈 ∪ { 0 } ) ) |
| 20 |
12 19
|
difeq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑏 ∖ ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) ) = ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ) |
| 21 |
|
fvexd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ∥r ‘ 𝑟 ) ∈ V ) |
| 22 |
|
eqidd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → 𝑝 = 𝑝 ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → 𝑑 = ( ∥r ‘ 𝑟 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ 𝑟 ) = ( ∥r ‘ 𝑅 ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( ∥r ‘ 𝑟 ) = ( ∥r ‘ 𝑅 ) ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → 𝑑 = ( ∥r ‘ 𝑅 ) ) |
| 27 |
26 5
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → 𝑑 = ∥ ) |
| 28 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 29 |
28 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = · ) |
| 31 |
30
|
oveqd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 32 |
22 27 31
|
breq123d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ↔ 𝑝 ∥ ( 𝑥 · 𝑦 ) ) ) |
| 33 |
27
|
breqd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( 𝑝 𝑑 𝑥 ↔ 𝑝 ∥ 𝑥 ) ) |
| 34 |
27
|
breqd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( 𝑝 𝑑 𝑦 ↔ 𝑝 ∥ 𝑦 ) ) |
| 35 |
33 34
|
orbi12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ↔ ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ) |
| 36 |
32 35
|
imbi12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) ∧ 𝑑 = ( ∥r ‘ 𝑟 ) ) → ( ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) ↔ ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ) ) |
| 37 |
21 36
|
sbcied |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) ↔ ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ) ) |
| 38 |
12 37
|
raleqbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ) ) |
| 39 |
12 38
|
raleqbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) ) ) |
| 40 |
20 39
|
rabeqbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } = { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ) |
| 41 |
7 40
|
csbied |
⊢ ( 𝑟 = 𝑅 → ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ { 𝑝 ∈ ( 𝑏 ∖ ( ( Unit ‘ 𝑟 ) ∪ { ( 0g ‘ 𝑟 ) } ) ) ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 [ ( ∥r ‘ 𝑟 ) / 𝑑 ] ( 𝑝 𝑑 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) → ( 𝑝 𝑑 𝑥 ∨ 𝑝 𝑑 𝑦 ) ) } = { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ) |
| 42 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
| 43 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 44 |
43
|
difexi |
⊢ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∈ V |
| 45 |
44
|
rabex |
⊢ { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ∈ V |
| 46 |
45
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ∈ V ) |
| 47 |
6 41 42 46
|
fvmptd3 |
⊢ ( 𝑅 ∈ 𝑉 → ( RPrime ‘ 𝑅 ) = { 𝑝 ∈ ( 𝐵 ∖ ( 𝑈 ∪ { 0 } ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑝 ∥ ( 𝑥 · 𝑦 ) → ( 𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦 ) ) } ) |