Step |
Hyp |
Ref |
Expression |
1 |
|
rprmval.b |
|- B = ( Base ` R ) |
2 |
|
rprmval.u |
|- U = ( Unit ` R ) |
3 |
|
rprmval.1 |
|- .0. = ( 0g ` R ) |
4 |
|
rprmval.m |
|- .x. = ( .r ` R ) |
5 |
|
rprmval.d |
|- .|| = ( ||r ` R ) |
6 |
|
df-rprm |
|- RPrime = ( r e. _V |-> [_ ( Base ` r ) / b ]_ { p e. ( b \ ( ( Unit ` r ) u. { ( 0g ` r ) } ) ) | A. x e. b A. y e. b [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) } ) |
7 |
|
fvexd |
|- ( r = R -> ( Base ` r ) e. _V ) |
8 |
|
simpr |
|- ( ( r = R /\ b = ( Base ` r ) ) -> b = ( Base ` r ) ) |
9 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
10 |
9
|
adantr |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( Base ` r ) = ( Base ` R ) ) |
11 |
8 10
|
eqtrd |
|- ( ( r = R /\ b = ( Base ` r ) ) -> b = ( Base ` R ) ) |
12 |
11 1
|
eqtr4di |
|- ( ( r = R /\ b = ( Base ` r ) ) -> b = B ) |
13 |
|
fveq2 |
|- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
14 |
13 2
|
eqtr4di |
|- ( r = R -> ( Unit ` r ) = U ) |
15 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
16 |
15 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
17 |
16
|
sneqd |
|- ( r = R -> { ( 0g ` r ) } = { .0. } ) |
18 |
14 17
|
uneq12d |
|- ( r = R -> ( ( Unit ` r ) u. { ( 0g ` r ) } ) = ( U u. { .0. } ) ) |
19 |
18
|
adantr |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( ( Unit ` r ) u. { ( 0g ` r ) } ) = ( U u. { .0. } ) ) |
20 |
12 19
|
difeq12d |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( b \ ( ( Unit ` r ) u. { ( 0g ` r ) } ) ) = ( B \ ( U u. { .0. } ) ) ) |
21 |
|
fvexd |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( ||r ` r ) e. _V ) |
22 |
|
eqidd |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> p = p ) |
23 |
|
simpr |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> d = ( ||r ` r ) ) |
24 |
|
fveq2 |
|- ( r = R -> ( ||r ` r ) = ( ||r ` R ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( ||r ` r ) = ( ||r ` R ) ) |
26 |
23 25
|
eqtrd |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> d = ( ||r ` R ) ) |
27 |
26 5
|
eqtr4di |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> d = .|| ) |
28 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
29 |
28 4
|
eqtr4di |
|- ( r = R -> ( .r ` r ) = .x. ) |
30 |
29
|
ad2antrr |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( .r ` r ) = .x. ) |
31 |
30
|
oveqd |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( x ( .r ` r ) y ) = ( x .x. y ) ) |
32 |
22 27 31
|
breq123d |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( p d ( x ( .r ` r ) y ) <-> p .|| ( x .x. y ) ) ) |
33 |
27
|
breqd |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( p d x <-> p .|| x ) ) |
34 |
27
|
breqd |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( p d y <-> p .|| y ) ) |
35 |
33 34
|
orbi12d |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( ( p d x \/ p d y ) <-> ( p .|| x \/ p .|| y ) ) ) |
36 |
32 35
|
imbi12d |
|- ( ( ( r = R /\ b = ( Base ` r ) ) /\ d = ( ||r ` r ) ) -> ( ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) <-> ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) ) ) |
37 |
21 36
|
sbcied |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) <-> ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) ) ) |
38 |
12 37
|
raleqbidv |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( A. y e. b [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) <-> A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) ) ) |
39 |
12 38
|
raleqbidv |
|- ( ( r = R /\ b = ( Base ` r ) ) -> ( A. x e. b A. y e. b [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) <-> A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) ) ) |
40 |
20 39
|
rabeqbidv |
|- ( ( r = R /\ b = ( Base ` r ) ) -> { p e. ( b \ ( ( Unit ` r ) u. { ( 0g ` r ) } ) ) | A. x e. b A. y e. b [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) } = { p e. ( B \ ( U u. { .0. } ) ) | A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) } ) |
41 |
7 40
|
csbied |
|- ( r = R -> [_ ( Base ` r ) / b ]_ { p e. ( b \ ( ( Unit ` r ) u. { ( 0g ` r ) } ) ) | A. x e. b A. y e. b [. ( ||r ` r ) / d ]. ( p d ( x ( .r ` r ) y ) -> ( p d x \/ p d y ) ) } = { p e. ( B \ ( U u. { .0. } ) ) | A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) } ) |
42 |
|
elex |
|- ( R e. V -> R e. _V ) |
43 |
1
|
fvexi |
|- B e. _V |
44 |
43
|
difexi |
|- ( B \ ( U u. { .0. } ) ) e. _V |
45 |
44
|
rabex |
|- { p e. ( B \ ( U u. { .0. } ) ) | A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) } e. _V |
46 |
45
|
a1i |
|- ( R e. V -> { p e. ( B \ ( U u. { .0. } ) ) | A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) } e. _V ) |
47 |
6 41 42 46
|
fvmptd3 |
|- ( R e. V -> ( RPrime ` R ) = { p e. ( B \ ( U u. { .0. } ) ) | A. x e. B A. y e. B ( p .|| ( x .x. y ) -> ( p .|| x \/ p .|| y ) ) } ) |