Metamath Proof Explorer


Theorem isrprm

Description: Property for P to be a prime element in the ring R . (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses isrprm.1 B=BaseR
isrprm.2 U=UnitR
isrprm.3 0˙=0R
isrprm.4 ˙=rR
isrprm.5 ·˙=R
Assertion isrprm RVPRPrimeRPBU0˙xByBP˙x·˙yP˙xP˙y

Proof

Step Hyp Ref Expression
1 isrprm.1 B=BaseR
2 isrprm.2 U=UnitR
3 isrprm.3 0˙=0R
4 isrprm.4 ˙=rR
5 isrprm.5 ·˙=R
6 1 2 3 5 4 rprmval RVRPrimeR=pBU0˙|xByBp˙x·˙yp˙xp˙y
7 6 eleq2d RVPRPrimeRPpBU0˙|xByBp˙x·˙yp˙xp˙y
8 breq1 p=Pp˙x·˙yP˙x·˙y
9 breq1 p=Pp˙xP˙x
10 breq1 p=Pp˙yP˙y
11 9 10 orbi12d p=Pp˙xp˙yP˙xP˙y
12 8 11 imbi12d p=Pp˙x·˙yp˙xp˙yP˙x·˙yP˙xP˙y
13 12 2ralbidv p=PxByBp˙x·˙yp˙xp˙yxByBP˙x·˙yP˙xP˙y
14 13 elrab PpBU0˙|xByBp˙x·˙yp˙xp˙yPBU0˙xByBP˙x·˙yP˙xP˙y
15 7 14 bitrdi RVPRPrimeRPBU0˙xByBP˙x·˙yP˙xP˙y