| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirred.p |
|- P = ( RPrime ` R ) |
| 2 |
|
rprmirred.i |
|- I = ( Irred ` R ) |
| 3 |
|
rprmirred.q |
|- ( ph -> Q e. P ) |
| 4 |
|
rprmirred.r |
|- ( ph -> R e. IDomn ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 1 4 3
|
rprmcl |
|- ( ph -> Q e. ( Base ` R ) ) |
| 7 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 8 |
1 7 4 3
|
rprmnunit |
|- ( ph -> -. Q e. ( Unit ` R ) ) |
| 9 |
6 8
|
eldifd |
|- ( ph -> Q e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 12 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 13 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> R e. IDomn ) |
| 14 |
13
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> R e. IDomn ) |
| 15 |
1 10 4 3
|
rprmnz |
|- ( ph -> Q =/= ( 0g ` R ) ) |
| 16 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> Q =/= ( 0g ` R ) ) |
| 17 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 19 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 20 |
19
|
eldifad |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> y e. ( Base ` R ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> y e. ( Base ` R ) ) |
| 22 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> ( x ( .r ` R ) y ) = Q ) |
| 23 |
22
|
eqcomd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> Q = ( x ( .r ` R ) y ) ) |
| 24 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> Q ( ||r ` R ) x ) |
| 25 |
5 7 10 11 12 14 16 18 21 23 24
|
rprmirredlem |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> y e. ( Unit ` R ) ) |
| 26 |
19
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 27 |
26
|
eldifbd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> -. y e. ( Unit ` R ) ) |
| 28 |
25 27
|
pm2.21fal |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) x ) -> F. ) |
| 29 |
13
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> R e. IDomn ) |
| 30 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> Q =/= ( 0g ` R ) ) |
| 31 |
19
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 32 |
17
|
eldifad |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> x e. ( Base ` R ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> x e. ( Base ` R ) ) |
| 34 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> ( x ( .r ` R ) y ) = Q ) |
| 35 |
29
|
idomcringd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> R e. CRing ) |
| 36 |
20
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> y e. ( Base ` R ) ) |
| 37 |
5 11 35 33 36
|
crngcomd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> ( x ( .r ` R ) y ) = ( y ( .r ` R ) x ) ) |
| 38 |
34 37
|
eqtr3d |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> Q = ( y ( .r ` R ) x ) ) |
| 39 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> Q ( ||r ` R ) y ) |
| 40 |
5 7 10 11 12 29 30 31 33 38 39
|
rprmirredlem |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> x e. ( Unit ` R ) ) |
| 41 |
17
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) |
| 42 |
41
|
eldifbd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> -. x e. ( Unit ` R ) ) |
| 43 |
40 42
|
pm2.21fal |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) /\ Q ( ||r ` R ) y ) -> F. ) |
| 44 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> Q e. P ) |
| 45 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
| 46 |
5 12
|
dvdsrid |
|- ( ( R e. Ring /\ Q e. ( Base ` R ) ) -> Q ( ||r ` R ) Q ) |
| 47 |
45 6 46
|
syl2anc |
|- ( ph -> Q ( ||r ` R ) Q ) |
| 48 |
47
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> Q ( ||r ` R ) Q ) |
| 49 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> ( x ( .r ` R ) y ) = Q ) |
| 50 |
48 49
|
breqtrrd |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> Q ( ||r ` R ) ( x ( .r ` R ) y ) ) |
| 51 |
5 1 12 11 13 44 32 20 50
|
rprmdvds |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> ( Q ( ||r ` R ) x \/ Q ( ||r ` R ) y ) ) |
| 52 |
28 43 51
|
mpjaodan |
|- ( ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ ( x ( .r ` R ) y ) = Q ) -> F. ) |
| 53 |
52
|
inegd |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) -> -. ( x ( .r ` R ) y ) = Q ) |
| 54 |
53
|
neqned |
|- ( ( ( ph /\ x e. ( ( Base ` R ) \ ( Unit ` R ) ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) -> ( x ( .r ` R ) y ) =/= Q ) |
| 55 |
54
|
anasss |
|- ( ( ph /\ ( x e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ y e. ( ( Base ` R ) \ ( Unit ` R ) ) ) ) -> ( x ( .r ` R ) y ) =/= Q ) |
| 56 |
55
|
ralrimivva |
|- ( ph -> A. x e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) =/= Q ) |
| 57 |
|
eqid |
|- ( ( Base ` R ) \ ( Unit ` R ) ) = ( ( Base ` R ) \ ( Unit ` R ) ) |
| 58 |
5 7 2 57 11
|
isirred |
|- ( Q e. I <-> ( Q e. ( ( Base ` R ) \ ( Unit ` R ) ) /\ A. x e. ( ( Base ` R ) \ ( Unit ` R ) ) A. y e. ( ( Base ` R ) \ ( Unit ` R ) ) ( x ( .r ` R ) y ) =/= Q ) ) |
| 59 |
9 56 58
|
sylanbrc |
|- ( ph -> Q e. I ) |