| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredlem.1 |
|- B = ( Base ` R ) |
| 2 |
|
rprmirredlem.2 |
|- U = ( Unit ` R ) |
| 3 |
|
rprmirredlem.3 |
|- .0. = ( 0g ` R ) |
| 4 |
|
rprmirredlem.4 |
|- .x. = ( .r ` R ) |
| 5 |
|
rprmirredlem.5 |
|- .|| = ( ||r ` R ) |
| 6 |
|
rprmirredlem.6 |
|- ( ph -> R e. IDomn ) |
| 7 |
|
rprmirredlem.7 |
|- ( ph -> Q =/= .0. ) |
| 8 |
|
rprmirredlem.8 |
|- ( ph -> X e. ( B \ U ) ) |
| 9 |
|
rprmirredlem.9 |
|- ( ph -> Y e. B ) |
| 10 |
|
rprmirredlem.10 |
|- ( ph -> Q = ( X .x. Y ) ) |
| 11 |
|
rprmirredlem.11 |
|- ( ph -> Q .|| X ) |
| 12 |
6
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. CRing ) |
| 14 |
9
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. B ) |
| 15 |
13
|
crngringd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. Ring ) |
| 16 |
|
simplr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> t e. B ) |
| 17 |
1 4 15 16 14
|
ringcld |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) e. B ) |
| 18 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 19 |
1 18
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 20 |
15 19
|
syl |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( 1r ` R ) e. B ) |
| 21 |
1 5 4
|
dvdsr |
|- ( Q .|| X <-> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) ) |
| 22 |
11 21
|
sylib |
|- ( ph -> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) ) |
| 23 |
22
|
simpld |
|- ( ph -> Q e. B ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. B ) |
| 25 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q =/= .0. ) |
| 26 |
24 25
|
eldifsnd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. ( B \ { .0. } ) ) |
| 27 |
6
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. IDomn ) |
| 28 |
|
simpr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Q ) = X ) |
| 29 |
28
|
oveq1d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = ( X .x. Y ) ) |
| 30 |
10
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q = ( X .x. Y ) ) |
| 31 |
29 30
|
eqtr4d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = Q ) |
| 32 |
1 4 13 16 14 24
|
cringmul32d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( t .x. Q ) .x. Y ) ) |
| 33 |
1 4 18 15 24
|
ringlidmd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( 1r ` R ) .x. Q ) = Q ) |
| 34 |
31 32 33
|
3eqtr4d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( 1r ` R ) .x. Q ) ) |
| 35 |
1 3 4 17 20 26 27 34
|
idomrcan |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) = ( 1r ` R ) ) |
| 36 |
22
|
simprd |
|- ( ph -> E. t e. B ( t .x. Q ) = X ) |
| 37 |
35 36
|
reximddv3 |
|- ( ph -> E. t e. B ( t .x. Y ) = ( 1r ` R ) ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> E. t e. B ( t .x. Y ) = ( 1r ` R ) ) |
| 39 |
1 5 4
|
dvdsr |
|- ( Y .|| ( 1r ` R ) <-> ( Y e. B /\ E. t e. B ( t .x. Y ) = ( 1r ` R ) ) ) |
| 40 |
14 38 39
|
sylanbrc |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y .|| ( 1r ` R ) ) |
| 41 |
2 18 5
|
crngunit |
|- ( R e. CRing -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
| 42 |
41
|
biimpar |
|- ( ( R e. CRing /\ Y .|| ( 1r ` R ) ) -> Y e. U ) |
| 43 |
13 40 42
|
syl2anc |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. U ) |
| 44 |
43 36
|
r19.29a |
|- ( ph -> Y e. U ) |