| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredlem.1 |
|
| 2 |
|
rprmirredlem.2 |
|
| 3 |
|
rprmirredlem.3 |
|
| 4 |
|
rprmirredlem.4 |
|
| 5 |
|
rprmirredlem.5 |
|
| 6 |
|
rprmirredlem.6 |
|
| 7 |
|
rprmirredlem.7 |
|
| 8 |
|
rprmirredlem.8 |
|
| 9 |
|
rprmirredlem.9 |
|
| 10 |
|
rprmirredlem.10 |
|
| 11 |
|
rprmirredlem.11 |
|
| 12 |
6
|
idomcringd |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
9
|
ad2antrr |
|
| 15 |
13
|
crngringd |
|
| 16 |
|
simplr |
|
| 17 |
1 4 15 16 14
|
ringcld |
|
| 18 |
|
eqid |
|
| 19 |
1 18
|
ringidcl |
|
| 20 |
15 19
|
syl |
|
| 21 |
1 5 4
|
dvdsr |
|
| 22 |
11 21
|
sylib |
|
| 23 |
22
|
simpld |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
7
|
ad2antrr |
|
| 26 |
24 25
|
eldifsnd |
|
| 27 |
6
|
ad2antrr |
|
| 28 |
|
simpr |
|
| 29 |
28
|
oveq1d |
|
| 30 |
10
|
ad2antrr |
|
| 31 |
29 30
|
eqtr4d |
|
| 32 |
1 4 13 16 14 24
|
cringmul32d |
|
| 33 |
1 4 18 15 24
|
ringlidmd |
|
| 34 |
31 32 33
|
3eqtr4d |
|
| 35 |
1 3 4 17 20 26 27 34
|
idomrcan |
|
| 36 |
22
|
simprd |
|
| 37 |
35 36
|
reximddv3 |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
1 5 4
|
dvdsr |
|
| 40 |
14 38 39
|
sylanbrc |
|
| 41 |
2 18 5
|
crngunit |
|
| 42 |
41
|
biimpar |
|
| 43 |
13 40 42
|
syl2anc |
|
| 44 |
43 36
|
r19.29a |
|