Metamath Proof Explorer


Theorem crng32d

Description: Commutative/associative law that swaps the last two factors in a triple product in a commutative ring. See also mul32d . (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses crng32d.b B = Base R
crng32d.t · ˙ = R
crng32d.r φ R CRing
crng32d.x φ X B
crng32d.y φ Y B
crng32d.z φ Z B
Assertion crng32d φ X · ˙ Y · ˙ Z = X · ˙ Z · ˙ Y

Proof

Step Hyp Ref Expression
1 crng32d.b B = Base R
2 crng32d.t · ˙ = R
3 crng32d.r φ R CRing
4 crng32d.x φ X B
5 crng32d.y φ Y B
6 crng32d.z φ Z B
7 1 2 3 5 6 crngcomd φ Y · ˙ Z = Z · ˙ Y
8 7 oveq2d φ X · ˙ Y · ˙ Z = X · ˙ Z · ˙ Y
9 3 crngringd φ R Ring
10 1 2 9 4 5 6 ringassd φ X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z
11 1 2 9 4 6 5 ringassd φ X · ˙ Z · ˙ Y = X · ˙ Z · ˙ Y
12 8 10 11 3eqtr4d φ X · ˙ Y · ˙ Z = X · ˙ Z · ˙ Y