| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredlem.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rprmirredlem.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
rprmirredlem.3 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
rprmirredlem.4 |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
rprmirredlem.5 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 6 |
|
rprmirredlem.6 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 7 |
|
rprmirredlem.7 |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
| 8 |
|
rprmirredlem.8 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑈 ) ) |
| 9 |
|
rprmirredlem.9 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
rprmirredlem.10 |
⊢ ( 𝜑 → 𝑄 = ( 𝑋 · 𝑌 ) ) |
| 11 |
|
rprmirredlem.11 |
⊢ ( 𝜑 → 𝑄 ∥ 𝑋 ) |
| 12 |
6
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ CRing ) |
| 14 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 15 |
13
|
crngringd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ Ring ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑡 ∈ 𝐵 ) |
| 17 |
1 4 15 16 14
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) ∈ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 19 |
1 18
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 20 |
15 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 21 |
1 5 4
|
dvdsr |
⊢ ( 𝑄 ∥ 𝑋 ↔ ( 𝑄 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) ) |
| 22 |
11 21
|
sylib |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) ) |
| 23 |
22
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ∈ 𝐵 ) |
| 25 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ≠ 0 ) |
| 26 |
24 25
|
eldifsnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 27 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑅 ∈ IDomn ) |
| 28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑄 ) = 𝑋 ) |
| 29 |
28
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
| 30 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑄 = ( 𝑋 · 𝑌 ) ) |
| 31 |
29 30
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑄 ) · 𝑌 ) = 𝑄 ) |
| 32 |
1 4 13 16 14 24
|
cringmul32d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 𝑡 · 𝑄 ) · 𝑌 ) ) |
| 33 |
1 4 18 15 24
|
ringlidmd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 1r ‘ 𝑅 ) · 𝑄 ) = 𝑄 ) |
| 34 |
31 32 33
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( ( 𝑡 · 𝑌 ) · 𝑄 ) = ( ( 1r ‘ 𝑅 ) · 𝑄 ) ) |
| 35 |
1 3 4 17 20 26 27 34
|
idomrcan |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 36 |
22
|
simprd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑄 ) = 𝑋 ) |
| 37 |
35 36
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 39 |
1 5 4
|
dvdsr |
⊢ ( 𝑌 ∥ ( 1r ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 · 𝑌 ) = ( 1r ‘ 𝑅 ) ) ) |
| 40 |
14 38 39
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∥ ( 1r ‘ 𝑅 ) ) |
| 41 |
2 18 5
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( 𝑌 ∈ 𝑈 ↔ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 42 |
41
|
biimpar |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) → 𝑌 ∈ 𝑈 ) |
| 43 |
13 40 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) ∧ ( 𝑡 · 𝑄 ) = 𝑋 ) → 𝑌 ∈ 𝑈 ) |
| 44 |
43 36
|
r19.29a |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |