| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsucmap3 |
|- SucMap = ( _I AdjLiftMap _V ) |
| 2 |
|
dmi |
|- dom _I = _V |
| 3 |
2
|
reseq2i |
|- ( ( _I u. `' _E ) |` dom _I ) = ( ( _I u. `' _E ) |` _V ) |
| 4 |
3
|
dmeqi |
|- dom ( ( _I u. `' _E ) |` dom _I ) = dom ( ( _I u. `' _E ) |` _V ) |
| 5 |
3
|
eceq2i |
|- [ m ] ( ( _I u. `' _E ) |` dom _I ) = [ m ] ( ( _I u. `' _E ) |` _V ) |
| 6 |
4 5
|
mpteq12i |
|- ( m e. dom ( ( _I u. `' _E ) |` dom _I ) |-> [ m ] ( ( _I u. `' _E ) |` dom _I ) ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) |
| 7 |
|
df-adjliftmap |
|- ( _I AdjLiftMap dom _I ) = ( m e. dom ( ( _I u. `' _E ) |` dom _I ) |-> [ m ] ( ( _I u. `' _E ) |` dom _I ) ) |
| 8 |
|
df-adjliftmap |
|- ( _I AdjLiftMap _V ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) |
| 9 |
6 7 8
|
3eqtr4i |
|- ( _I AdjLiftMap dom _I ) = ( _I AdjLiftMap _V ) |
| 10 |
1 9
|
eqtr4i |
|- SucMap = ( _I AdjLiftMap dom _I ) |