| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsucmap3 |
⊢ SucMap = ( I AdjLiftMap V ) |
| 2 |
|
dmi |
⊢ dom I = V |
| 3 |
2
|
reseq2i |
⊢ ( ( I ∪ ◡ E ) ↾ dom I ) = ( ( I ∪ ◡ E ) ↾ V ) |
| 4 |
3
|
dmeqi |
⊢ dom ( ( I ∪ ◡ E ) ↾ dom I ) = dom ( ( I ∪ ◡ E ) ↾ V ) |
| 5 |
3
|
eceq2i |
⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) = [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) |
| 6 |
4 5
|
mpteq12i |
⊢ ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ dom I ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) |
| 7 |
|
df-adjliftmap |
⊢ ( I AdjLiftMap dom I ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ dom I ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) ) |
| 8 |
|
df-adjliftmap |
⊢ ( I AdjLiftMap V ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) |
| 9 |
6 7 8
|
3eqtr4i |
⊢ ( I AdjLiftMap dom I ) = ( I AdjLiftMap V ) |
| 10 |
1 9
|
eqtr4i |
⊢ SucMap = ( I AdjLiftMap dom I ) |