Metamath Proof Explorer


Theorem dfsucmap4

Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dfsucmap4 SucMap = ( 𝑚 ∈ V ↦ suc 𝑚 )

Proof

Step Hyp Ref Expression
1 eqcom ( 𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛 )
2 1 opabbii { ⟨ 𝑚 , 𝑛 ⟩ ∣ 𝑛 = suc 𝑚 } = { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 }
3 mptv ( 𝑚 ∈ V ↦ suc 𝑚 ) = { ⟨ 𝑚 , 𝑛 ⟩ ∣ 𝑛 = suc 𝑚 }
4 df-sucmap SucMap = { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 }
5 2 3 4 3eqtr4ri SucMap = ( 𝑚 ∈ V ↦ suc 𝑚 )