Metamath Proof Explorer


Theorem dfsucmap4

Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dfsucmap4 Could not format assertion : No typesetting found for |- SucMap = ( m e. _V |-> suc m ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqcom n = suc m suc m = n
2 1 opabbii m n | n = suc m = m n | suc m = n
3 mptv m V suc m = m n | n = suc m
4 df-sucmap Could not format SucMap = { <. m , n >. | suc m = n } : No typesetting found for |- SucMap = { <. m , n >. | suc m = n } with typecode |-
5 2 3 4 3eqtr4ri Could not format SucMap = ( m e. _V |-> suc m ) : No typesetting found for |- SucMap = ( m e. _V |-> suc m ) with typecode |-