| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcom |
⊢ ( 𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛 ) |
| 2 |
1
|
opabbii |
⊢ { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| 3 |
|
df-adjliftmap |
⊢ ( I AdjLiftMap V ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) |
| 4 |
|
dmresv |
⊢ dom ( ( I ∪ ◡ E ) ↾ V ) = dom ( I ∪ ◡ E ) |
| 5 |
|
dmun |
⊢ dom ( I ∪ ◡ E ) = ( dom I ∪ dom ◡ E ) |
| 6 |
|
dmi |
⊢ dom I = V |
| 7 |
|
dmcnvep |
⊢ dom ◡ E = ( V ∖ { ∅ } ) |
| 8 |
6 7
|
uneq12i |
⊢ ( dom I ∪ dom ◡ E ) = ( V ∪ ( V ∖ { ∅ } ) ) |
| 9 |
|
undifabs |
⊢ ( V ∪ ( V ∖ { ∅ } ) ) = V |
| 10 |
5 8 9
|
3eqtri |
⊢ dom ( I ∪ ◡ E ) = V |
| 11 |
4 10
|
eqtri |
⊢ dom ( ( I ∪ ◡ E ) ↾ V ) = V |
| 12 |
|
orcom |
⊢ ( ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ↔ ( 𝑛 ∈ 𝑚 ∨ 𝑛 ∈ { 𝑚 } ) ) |
| 13 |
|
elecALTV |
⊢ ( ( 𝑚 ∈ V ∧ 𝑛 ∈ V ) → ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑚 ( I ∪ ◡ E ) 𝑛 ) ) |
| 14 |
13
|
el2v |
⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑚 ( I ∪ ◡ E ) 𝑛 ) |
| 15 |
|
brun |
⊢ ( 𝑚 ( I ∪ ◡ E ) 𝑛 ↔ ( 𝑚 I 𝑛 ∨ 𝑚 ◡ E 𝑛 ) ) |
| 16 |
|
equcom |
⊢ ( 𝑚 = 𝑛 ↔ 𝑛 = 𝑚 ) |
| 17 |
|
ideqg |
⊢ ( 𝑛 ∈ V → ( 𝑚 I 𝑛 ↔ 𝑚 = 𝑛 ) ) |
| 18 |
17
|
elv |
⊢ ( 𝑚 I 𝑛 ↔ 𝑚 = 𝑛 ) |
| 19 |
|
velsn |
⊢ ( 𝑛 ∈ { 𝑚 } ↔ 𝑛 = 𝑚 ) |
| 20 |
16 18 19
|
3bitr4i |
⊢ ( 𝑚 I 𝑛 ↔ 𝑛 ∈ { 𝑚 } ) |
| 21 |
|
brcnvep |
⊢ ( 𝑚 ∈ V → ( 𝑚 ◡ E 𝑛 ↔ 𝑛 ∈ 𝑚 ) ) |
| 22 |
21
|
elv |
⊢ ( 𝑚 ◡ E 𝑛 ↔ 𝑛 ∈ 𝑚 ) |
| 23 |
20 22
|
orbi12i |
⊢ ( ( 𝑚 I 𝑛 ∨ 𝑚 ◡ E 𝑛 ) ↔ ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ) |
| 24 |
14 15 23
|
3bitri |
⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ) |
| 25 |
|
elun |
⊢ ( 𝑛 ∈ ( 𝑚 ∪ { 𝑚 } ) ↔ ( 𝑛 ∈ 𝑚 ∨ 𝑛 ∈ { 𝑚 } ) ) |
| 26 |
12 24 25
|
3bitr4i |
⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑛 ∈ ( 𝑚 ∪ { 𝑚 } ) ) |
| 27 |
26
|
eqriv |
⊢ [ 𝑚 ] ( I ∪ ◡ E ) = ( 𝑚 ∪ { 𝑚 } ) |
| 28 |
|
reli |
⊢ Rel I |
| 29 |
|
relcnv |
⊢ Rel ◡ E |
| 30 |
|
relun |
⊢ ( Rel ( I ∪ ◡ E ) ↔ ( Rel I ∧ Rel ◡ E ) ) |
| 31 |
28 29 30
|
mpbir2an |
⊢ Rel ( I ∪ ◡ E ) |
| 32 |
|
dfrel3 |
⊢ ( Rel ( I ∪ ◡ E ) ↔ ( ( I ∪ ◡ E ) ↾ V ) = ( I ∪ ◡ E ) ) |
| 33 |
31 32
|
mpbi |
⊢ ( ( I ∪ ◡ E ) ↾ V ) = ( I ∪ ◡ E ) |
| 34 |
33
|
eceq2i |
⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) = [ 𝑚 ] ( I ∪ ◡ E ) |
| 35 |
|
df-suc |
⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) |
| 36 |
27 34 35
|
3eqtr4i |
⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) = suc 𝑚 |
| 37 |
11 36
|
mpteq12i |
⊢ ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) = ( 𝑚 ∈ V ↦ suc 𝑚 ) |
| 38 |
|
mptv |
⊢ ( 𝑚 ∈ V ↦ suc 𝑚 ) = { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } |
| 39 |
3 37 38
|
3eqtri |
⊢ ( I AdjLiftMap V ) = { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } |
| 40 |
|
df-sucmap |
⊢ SucMap = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| 41 |
2 39 40
|
3eqtr4ri |
⊢ SucMap = ( I AdjLiftMap V ) |