| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcom |
|- ( n = suc m <-> suc m = n ) |
| 2 |
1
|
opabbii |
|- { <. m , n >. | n = suc m } = { <. m , n >. | suc m = n } |
| 3 |
|
df-adjliftmap |
|- ( _I AdjLiftMap _V ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) |
| 4 |
|
dmresv |
|- dom ( ( _I u. `' _E ) |` _V ) = dom ( _I u. `' _E ) |
| 5 |
|
dmun |
|- dom ( _I u. `' _E ) = ( dom _I u. dom `' _E ) |
| 6 |
|
dmi |
|- dom _I = _V |
| 7 |
|
dmcnvep |
|- dom `' _E = ( _V \ { (/) } ) |
| 8 |
6 7
|
uneq12i |
|- ( dom _I u. dom `' _E ) = ( _V u. ( _V \ { (/) } ) ) |
| 9 |
|
undifabs |
|- ( _V u. ( _V \ { (/) } ) ) = _V |
| 10 |
5 8 9
|
3eqtri |
|- dom ( _I u. `' _E ) = _V |
| 11 |
4 10
|
eqtri |
|- dom ( ( _I u. `' _E ) |` _V ) = _V |
| 12 |
|
orcom |
|- ( ( n e. { m } \/ n e. m ) <-> ( n e. m \/ n e. { m } ) ) |
| 13 |
|
elecALTV |
|- ( ( m e. _V /\ n e. _V ) -> ( n e. [ m ] ( _I u. `' _E ) <-> m ( _I u. `' _E ) n ) ) |
| 14 |
13
|
el2v |
|- ( n e. [ m ] ( _I u. `' _E ) <-> m ( _I u. `' _E ) n ) |
| 15 |
|
brun |
|- ( m ( _I u. `' _E ) n <-> ( m _I n \/ m `' _E n ) ) |
| 16 |
|
equcom |
|- ( m = n <-> n = m ) |
| 17 |
|
ideqg |
|- ( n e. _V -> ( m _I n <-> m = n ) ) |
| 18 |
17
|
elv |
|- ( m _I n <-> m = n ) |
| 19 |
|
velsn |
|- ( n e. { m } <-> n = m ) |
| 20 |
16 18 19
|
3bitr4i |
|- ( m _I n <-> n e. { m } ) |
| 21 |
|
brcnvep |
|- ( m e. _V -> ( m `' _E n <-> n e. m ) ) |
| 22 |
21
|
elv |
|- ( m `' _E n <-> n e. m ) |
| 23 |
20 22
|
orbi12i |
|- ( ( m _I n \/ m `' _E n ) <-> ( n e. { m } \/ n e. m ) ) |
| 24 |
14 15 23
|
3bitri |
|- ( n e. [ m ] ( _I u. `' _E ) <-> ( n e. { m } \/ n e. m ) ) |
| 25 |
|
elun |
|- ( n e. ( m u. { m } ) <-> ( n e. m \/ n e. { m } ) ) |
| 26 |
12 24 25
|
3bitr4i |
|- ( n e. [ m ] ( _I u. `' _E ) <-> n e. ( m u. { m } ) ) |
| 27 |
26
|
eqriv |
|- [ m ] ( _I u. `' _E ) = ( m u. { m } ) |
| 28 |
|
reli |
|- Rel _I |
| 29 |
|
relcnv |
|- Rel `' _E |
| 30 |
|
relun |
|- ( Rel ( _I u. `' _E ) <-> ( Rel _I /\ Rel `' _E ) ) |
| 31 |
28 29 30
|
mpbir2an |
|- Rel ( _I u. `' _E ) |
| 32 |
|
dfrel3 |
|- ( Rel ( _I u. `' _E ) <-> ( ( _I u. `' _E ) |` _V ) = ( _I u. `' _E ) ) |
| 33 |
31 32
|
mpbi |
|- ( ( _I u. `' _E ) |` _V ) = ( _I u. `' _E ) |
| 34 |
33
|
eceq2i |
|- [ m ] ( ( _I u. `' _E ) |` _V ) = [ m ] ( _I u. `' _E ) |
| 35 |
|
df-suc |
|- suc m = ( m u. { m } ) |
| 36 |
27 34 35
|
3eqtr4i |
|- [ m ] ( ( _I u. `' _E ) |` _V ) = suc m |
| 37 |
11 36
|
mpteq12i |
|- ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) = ( m e. _V |-> suc m ) |
| 38 |
|
mptv |
|- ( m e. _V |-> suc m ) = { <. m , n >. | n = suc m } |
| 39 |
3 37 38
|
3eqtri |
|- ( _I AdjLiftMap _V ) = { <. m , n >. | n = suc m } |
| 40 |
|
df-sucmap |
|- SucMap = { <. m , n >. | suc m = n } |
| 41 |
2 39 40
|
3eqtr4ri |
|- SucMap = ( _I AdjLiftMap _V ) |