| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( N e. NN /\ X e. NN ) -> X e. NN ) |
| 2 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 3 |
|
nnnn0 |
|- ( X e. NN -> X e. NN0 ) |
| 4 |
|
zexpcl |
|- ( ( N e. ZZ /\ X e. NN0 ) -> ( N ^ X ) e. ZZ ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( N e. NN /\ X e. NN ) -> ( N ^ X ) e. ZZ ) |
| 6 |
2
|
adantr |
|- ( ( N e. NN /\ X e. NN ) -> N e. ZZ ) |
| 7 |
|
moddvds |
|- ( ( X e. NN /\ ( N ^ X ) e. ZZ /\ N e. ZZ ) -> ( ( ( N ^ X ) mod X ) = ( N mod X ) <-> X || ( ( N ^ X ) - N ) ) ) |
| 8 |
1 5 6 7
|
syl3anc |
|- ( ( N e. NN /\ X e. NN ) -> ( ( ( N ^ X ) mod X ) = ( N mod X ) <-> X || ( ( N ^ X ) - N ) ) ) |