Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Fermat pseudoprimes
dfwppr
Metamath Proof Explorer
Description: Alternate definition of aweak pseudoprime X , which fulfils
( N ^ X ) == N (modulo X ), see Wikipedia "Fermat pseudoprime",
https://en.wikipedia.org/wiki/Fermat_pseudoprime , 29-May-2023.
(Contributed by AV , 31-May-2023)
Ref
Expression
Assertion
dfwppr
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑁 ↑ 𝑋 ) mod 𝑋 ) = ( 𝑁 mod 𝑋 ) ↔ 𝑋 ∥ ( ( 𝑁 ↑ 𝑋 ) − 𝑁 ) ) )
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ ) → 𝑋 ∈ ℕ )
2
nnz
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
3
nnnn0
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℕ0 )
4
zexpcl
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ∈ ℤ )
5
2 3 4
syl2an
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ∈ ℤ )
6
2
adantr
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ ) → 𝑁 ∈ ℤ )
7
moddvds
⊢ ( ( 𝑋 ∈ ℕ ∧ ( 𝑁 ↑ 𝑋 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑁 ↑ 𝑋 ) mod 𝑋 ) = ( 𝑁 mod 𝑋 ) ↔ 𝑋 ∥ ( ( 𝑁 ↑ 𝑋 ) − 𝑁 ) ) )
8
1 5 6 7
syl3anc
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑁 ↑ 𝑋 ) mod 𝑋 ) = ( 𝑁 mod 𝑋 ) ↔ 𝑋 ∥ ( ( 𝑁 ↑ 𝑋 ) − 𝑁 ) ) )