Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Alexander van der Vekens Number theory (extension 2) Fermat pseudoprimes dfwppr  
				
		 
		
			
		 
		Description:   Alternate definition of aweak pseudoprime  X  , which fulfils
       ( N ^ X ) == N  (modulo X  ), see Wikipedia "Fermat pseudoprime",
       https://en.wikipedia.org/wiki/Fermat_pseudoprime  , 29-May-2023.
       (Contributed by AV , 31-May-2023) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					dfwppr ⊢   ( ( 𝑁   ∈  ℕ  ∧  𝑋   ∈  ℕ )  →  ( ( ( 𝑁  ↑ 𝑋  )  mod  𝑋  )  =  ( 𝑁   mod  𝑋  )  ↔  𝑋   ∥  ( ( 𝑁  ↑ 𝑋  )  −  𝑁  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							simpr ⊢  ( ( 𝑁   ∈  ℕ  ∧  𝑋   ∈  ℕ )  →  𝑋   ∈  ℕ )  
						
							2 
								
							 
							nnz ⊢  ( 𝑁   ∈  ℕ  →  𝑁   ∈  ℤ )  
						
							3 
								
							 
							nnnn0 ⊢  ( 𝑋   ∈  ℕ  →  𝑋   ∈  ℕ0  )  
						
							4 
								
							 
							zexpcl ⊢  ( ( 𝑁   ∈  ℤ  ∧  𝑋   ∈  ℕ0  )  →  ( 𝑁  ↑ 𝑋  )  ∈  ℤ )  
						
							5 
								2  3  4 
							 
							syl2an ⊢  ( ( 𝑁   ∈  ℕ  ∧  𝑋   ∈  ℕ )  →  ( 𝑁  ↑ 𝑋  )  ∈  ℤ )  
						
							6 
								2 
							 
							adantr ⊢  ( ( 𝑁   ∈  ℕ  ∧  𝑋   ∈  ℕ )  →  𝑁   ∈  ℤ )  
						
							7 
								
							 
							moddvds ⊢  ( ( 𝑋   ∈  ℕ  ∧  ( 𝑁  ↑ 𝑋  )  ∈  ℤ  ∧  𝑁   ∈  ℤ )  →  ( ( ( 𝑁  ↑ 𝑋  )  mod  𝑋  )  =  ( 𝑁   mod  𝑋  )  ↔  𝑋   ∥  ( ( 𝑁  ↑ 𝑋  )  −  𝑁  ) ) )  
						
							8 
								1  5  6  7 
							 
							syl3anc ⊢  ( ( 𝑁   ∈  ℕ  ∧  𝑋   ∈  ℕ )  →  ( ( ( 𝑁  ↑ 𝑋  )  mod  𝑋  )  =  ( 𝑁   mod  𝑋  )  ↔  𝑋   ∥  ( ( 𝑁  ↑ 𝑋  )  −  𝑁  ) ) )