| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpprbasnn |
|- ( X e. ( FPPr ` N ) -> N e. NN ) |
| 2 |
|
fpprel |
|- ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
| 3 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 4 |
|
eluz4nn |
|- ( X e. ( ZZ>= ` 4 ) -> X e. NN ) |
| 5 |
|
nnm1nn0 |
|- ( X e. NN -> ( X - 1 ) e. NN0 ) |
| 6 |
4 5
|
syl |
|- ( X e. ( ZZ>= ` 4 ) -> ( X - 1 ) e. NN0 ) |
| 7 |
|
zexpcl |
|- ( ( N e. ZZ /\ ( X - 1 ) e. NN0 ) -> ( N ^ ( X - 1 ) ) e. ZZ ) |
| 8 |
3 6 7
|
syl2an |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. ZZ ) |
| 9 |
8
|
zred |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. RR ) |
| 10 |
4
|
nnrpd |
|- ( X e. ( ZZ>= ` 4 ) -> X e. RR+ ) |
| 11 |
10
|
adantl |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> X e. RR+ ) |
| 12 |
9 11
|
modcld |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) mod X ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) mod X ) e. CC ) |
| 14 |
|
1cnd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> 1 e. CC ) |
| 15 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 16 |
15
|
adantr |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N e. CC ) |
| 17 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 18 |
17
|
adantr |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N =/= 0 ) |
| 19 |
13 14 16 18
|
mulcand |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) <-> ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) |
| 20 |
|
oveq1 |
|- ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) ) |
| 21 |
3
|
adantr |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N e. ZZ ) |
| 22 |
|
modmulmodr |
|- ( ( N e. ZZ /\ ( N ^ ( X - 1 ) ) e. RR /\ X e. RR+ ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) ) |
| 23 |
21 9 11 22
|
syl3anc |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) ) |
| 24 |
23
|
eqeq1d |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) <-> ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) ) ) |
| 25 |
8
|
zcnd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. CC ) |
| 26 |
16 25
|
mulcomd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. ( N ^ ( X - 1 ) ) ) = ( ( N ^ ( X - 1 ) ) x. N ) ) |
| 27 |
|
expm1t |
|- ( ( N e. CC /\ X e. NN ) -> ( N ^ X ) = ( ( N ^ ( X - 1 ) ) x. N ) ) |
| 28 |
27
|
eqcomd |
|- ( ( N e. CC /\ X e. NN ) -> ( ( N ^ ( X - 1 ) ) x. N ) = ( N ^ X ) ) |
| 29 |
15 4 28
|
syl2an |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) x. N ) = ( N ^ X ) ) |
| 30 |
26 29
|
eqtrd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. ( N ^ ( X - 1 ) ) ) = ( N ^ X ) ) |
| 31 |
30
|
oveq1d |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N ^ X ) mod X ) ) |
| 32 |
15
|
mulridd |
|- ( N e. NN -> ( N x. 1 ) = N ) |
| 33 |
32
|
adantr |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. 1 ) = N ) |
| 34 |
33
|
oveq1d |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. 1 ) mod X ) = ( N mod X ) ) |
| 35 |
31 34
|
eqeq12d |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) <-> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 36 |
35
|
biimpd |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 37 |
24 36
|
sylbid |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 38 |
20 37
|
syl5 |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 39 |
19 38
|
sylbird |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 40 |
39
|
a1d |
|- ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( X e/ Prime -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) |
| 41 |
40
|
ex |
|- ( N e. NN -> ( X e. ( ZZ>= ` 4 ) -> ( X e/ Prime -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) ) |
| 42 |
41
|
3impd |
|- ( N e. NN -> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 43 |
2 42
|
sylbid |
|- ( N e. NN -> ( X e. ( FPPr ` N ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) |
| 44 |
1 43
|
mpcom |
|- ( X e. ( FPPr ` N ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) |