| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpprbasnn |  |-  ( X e. ( FPPr ` N ) -> N e. NN ) | 
						
							| 2 |  | fpprel |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 3 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 4 |  | eluz4nn |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. NN ) | 
						
							| 5 |  | nnm1nn0 |  |-  ( X e. NN -> ( X - 1 ) e. NN0 ) | 
						
							| 6 | 4 5 | syl |  |-  ( X e. ( ZZ>= ` 4 ) -> ( X - 1 ) e. NN0 ) | 
						
							| 7 |  | zexpcl |  |-  ( ( N e. ZZ /\ ( X - 1 ) e. NN0 ) -> ( N ^ ( X - 1 ) ) e. ZZ ) | 
						
							| 8 | 3 6 7 | syl2an |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. ZZ ) | 
						
							| 9 | 8 | zred |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. RR ) | 
						
							| 10 | 4 | nnrpd |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. RR+ ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> X e. RR+ ) | 
						
							| 12 | 9 11 | modcld |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) mod X ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) mod X ) e. CC ) | 
						
							| 14 |  | 1cnd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> 1 e. CC ) | 
						
							| 15 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N e. CC ) | 
						
							| 17 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 18 | 17 | adantr |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N =/= 0 ) | 
						
							| 19 | 13 14 16 18 | mulcand |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) <-> ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) | 
						
							| 20 |  | oveq1 |  |-  ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) ) | 
						
							| 21 | 3 | adantr |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> N e. ZZ ) | 
						
							| 22 |  | modmulmodr |  |-  ( ( N e. ZZ /\ ( N ^ ( X - 1 ) ) e. RR /\ X e. RR+ ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) ) | 
						
							| 23 | 21 9 11 22 | syl3anc |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) <-> ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) ) ) | 
						
							| 25 | 8 | zcnd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N ^ ( X - 1 ) ) e. CC ) | 
						
							| 26 | 16 25 | mulcomd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. ( N ^ ( X - 1 ) ) ) = ( ( N ^ ( X - 1 ) ) x. N ) ) | 
						
							| 27 |  | expm1t |  |-  ( ( N e. CC /\ X e. NN ) -> ( N ^ X ) = ( ( N ^ ( X - 1 ) ) x. N ) ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ( N e. CC /\ X e. NN ) -> ( ( N ^ ( X - 1 ) ) x. N ) = ( N ^ X ) ) | 
						
							| 29 | 15 4 28 | syl2an |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N ^ ( X - 1 ) ) x. N ) = ( N ^ X ) ) | 
						
							| 30 | 26 29 | eqtrd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. ( N ^ ( X - 1 ) ) ) = ( N ^ X ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N ^ X ) mod X ) ) | 
						
							| 32 | 15 | mulridd |  |-  ( N e. NN -> ( N x. 1 ) = N ) | 
						
							| 33 | 32 | adantr |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( N x. 1 ) = N ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. 1 ) mod X ) = ( N mod X ) ) | 
						
							| 35 | 31 34 | eqeq12d |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) <-> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 36 | 35 | biimpd |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( N ^ ( X - 1 ) ) ) mod X ) = ( ( N x. 1 ) mod X ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 37 | 24 36 | sylbid |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) mod X ) = ( ( N x. 1 ) mod X ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 38 | 20 37 | syl5 |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( N x. ( ( N ^ ( X - 1 ) ) mod X ) ) = ( N x. 1 ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 39 | 19 38 | sylbird |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 40 | 39 | a1d |  |-  ( ( N e. NN /\ X e. ( ZZ>= ` 4 ) ) -> ( X e/ Prime -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( N e. NN -> ( X e. ( ZZ>= ` 4 ) -> ( X e/ Prime -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) ) | 
						
							| 42 | 41 | 3impd |  |-  ( N e. NN -> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 43 | 2 42 | sylbid |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 44 | 1 43 | mpcom |  |-  ( X e. ( FPPr ` N ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) |