| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpprbasnn |  |-  ( X e. ( FPPr ` N ) -> N e. NN ) | 
						
							| 2 |  | fpprel |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 3 |  | 3simpa |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) | 
						
							| 4 | 3 | a1i |  |-  ( N e. NN -> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) ) | 
						
							| 5 | 2 4 | sylbid |  |-  ( N e. NN -> ( X e. ( FPPr ` N ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) ) | 
						
							| 6 | 1 5 | mpcom |  |-  ( X e. ( FPPr ` N ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) | 
						
							| 7 |  | fpprwppr |  |-  ( X e. ( FPPr ` N ) -> ( ( N ^ X ) mod X ) = ( N mod X ) ) | 
						
							| 8 | 1 7 | jca |  |-  ( X e. ( FPPr ` N ) -> ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) | 
						
							| 9 | 6 8 | jca |  |-  ( X e. ( FPPr ` N ) -> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) | 
						
							| 10 |  | simprll |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> X e. ( ZZ>= ` 4 ) ) | 
						
							| 11 |  | simprlr |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> X e/ Prime ) | 
						
							| 12 |  | eluz4nn |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. NN ) | 
						
							| 13 | 12 | adantr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> X e. NN ) | 
						
							| 14 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 15 | 12 | nnnn0d |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. NN0 ) | 
						
							| 16 |  | zexpcl |  |-  ( ( N e. ZZ /\ X e. NN0 ) -> ( N ^ X ) e. ZZ ) | 
						
							| 17 | 14 15 16 | syl2anr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( N ^ X ) e. ZZ ) | 
						
							| 18 | 14 | adantl |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> N e. ZZ ) | 
						
							| 19 |  | moddvds |  |-  ( ( X e. NN /\ ( N ^ X ) e. ZZ /\ N e. ZZ ) -> ( ( ( N ^ X ) mod X ) = ( N mod X ) <-> X || ( ( N ^ X ) - N ) ) ) | 
						
							| 20 | 13 17 18 19 | syl3anc |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( ( N ^ X ) mod X ) = ( N mod X ) <-> X || ( ( N ^ X ) - N ) ) ) | 
						
							| 21 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 22 |  | expm1t |  |-  ( ( N e. CC /\ X e. NN ) -> ( N ^ X ) = ( ( N ^ ( X - 1 ) ) x. N ) ) | 
						
							| 23 | 21 12 22 | syl2anr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( N ^ X ) = ( ( N ^ ( X - 1 ) ) x. N ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( N ^ X ) - N ) = ( ( ( N ^ ( X - 1 ) ) x. N ) - N ) ) | 
						
							| 25 |  | nnm1nn0 |  |-  ( X e. NN -> ( X - 1 ) e. NN0 ) | 
						
							| 26 | 12 25 | syl |  |-  ( X e. ( ZZ>= ` 4 ) -> ( X - 1 ) e. NN0 ) | 
						
							| 27 |  | zexpcl |  |-  ( ( N e. ZZ /\ ( X - 1 ) e. NN0 ) -> ( N ^ ( X - 1 ) ) e. ZZ ) | 
						
							| 28 | 14 26 27 | syl2anr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( N ^ ( X - 1 ) ) e. ZZ ) | 
						
							| 29 | 28 | zcnd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( N ^ ( X - 1 ) ) e. CC ) | 
						
							| 30 | 21 | adantl |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> N e. CC ) | 
						
							| 31 | 29 30 | mulsubfacd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( ( N ^ ( X - 1 ) ) x. N ) - N ) = ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) ) | 
						
							| 32 | 24 31 | eqtrd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( N ^ X ) - N ) = ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) ) | 
						
							| 33 | 32 | breq2d |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X || ( ( N ^ X ) - N ) <-> X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) ) ) | 
						
							| 34 |  | 1zzd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> 1 e. ZZ ) | 
						
							| 35 | 28 34 | zsubcld |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( N ^ ( X - 1 ) ) - 1 ) e. ZZ ) | 
						
							| 36 |  | dvdsmulgcd |  |-  ( ( ( ( N ^ ( X - 1 ) ) - 1 ) e. ZZ /\ N e. ZZ ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) <-> X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) ) ) | 
						
							| 37 | 35 18 36 | syl2anc |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) <-> X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) ) ) | 
						
							| 38 |  | eluzelz |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. ZZ ) | 
						
							| 39 |  | gcdcom |  |-  ( ( X e. ZZ /\ N e. ZZ ) -> ( X gcd N ) = ( N gcd X ) ) | 
						
							| 40 | 38 14 39 | syl2an |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X gcd N ) = ( N gcd X ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( X gcd N ) = 1 <-> ( N gcd X ) = 1 ) ) | 
						
							| 42 | 41 | biimpd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( X gcd N ) = 1 -> ( N gcd X ) = 1 ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( N gcd X ) = 1 ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) = ( ( ( N ^ ( X - 1 ) ) - 1 ) x. 1 ) ) | 
						
							| 45 | 35 | zcnd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( N ^ ( X - 1 ) ) - 1 ) e. CC ) | 
						
							| 46 | 45 | mulridd |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( ( N ^ ( X - 1 ) ) - 1 ) x. 1 ) = ( ( N ^ ( X - 1 ) ) - 1 ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( ( ( N ^ ( X - 1 ) ) - 1 ) x. 1 ) = ( ( N ^ ( X - 1 ) ) - 1 ) ) | 
						
							| 48 | 44 47 | eqtrd |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) = ( ( N ^ ( X - 1 ) ) - 1 ) ) | 
						
							| 49 | 48 | breq2d |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) <-> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) | 
						
							| 50 | 49 | biimpd |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) /\ ( X gcd N ) = 1 ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) | 
						
							| 51 | 50 | ex |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( X gcd N ) = 1 -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 52 | 51 | com23 |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. ( N gcd X ) ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 53 | 37 52 | sylbid |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X || ( ( ( N ^ ( X - 1 ) ) - 1 ) x. N ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 54 | 33 53 | sylbid |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( X || ( ( N ^ X ) - N ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 55 | 20 54 | sylbid |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ N e. NN ) -> ( ( ( N ^ X ) mod X ) = ( N mod X ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 56 | 55 | expimpd |  |-  ( X e. ( ZZ>= ` 4 ) -> ( ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) -> ( ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> ( ( X gcd N ) = 1 -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) | 
						
							| 59 | 58 | impcom |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) | 
						
							| 60 |  | eluz4eluz2 |  |-  ( X e. ( ZZ>= ` 4 ) -> X e. ( ZZ>= ` 2 ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) -> X e. ( ZZ>= ` 2 ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> X e. ( ZZ>= ` 2 ) ) | 
						
							| 63 | 14 | adantr |  |-  ( ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) -> N e. ZZ ) | 
						
							| 64 | 26 | adantr |  |-  ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) -> ( X - 1 ) e. NN0 ) | 
						
							| 65 | 63 64 27 | syl2anr |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> ( N ^ ( X - 1 ) ) e. ZZ ) | 
						
							| 66 | 62 65 | jca |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> ( X e. ( ZZ>= ` 2 ) /\ ( N ^ ( X - 1 ) ) e. ZZ ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> ( X e. ( ZZ>= ` 2 ) /\ ( N ^ ( X - 1 ) ) e. ZZ ) ) | 
						
							| 68 |  | modm1div |  |-  ( ( X e. ( ZZ>= ` 2 ) /\ ( N ^ ( X - 1 ) ) e. ZZ ) -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 <-> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> ( ( ( N ^ ( X - 1 ) ) mod X ) = 1 <-> X || ( ( N ^ ( X - 1 ) ) - 1 ) ) ) | 
						
							| 70 | 59 69 | mpbird |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) | 
						
							| 71 | 2 | adantr |  |-  ( ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> ( X e. ( FPPr ` N ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( N ^ ( X - 1 ) ) mod X ) = 1 ) ) ) | 
						
							| 74 | 10 11 70 73 | mpbir3and |  |-  ( ( ( X gcd N ) = 1 /\ ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) -> X e. ( FPPr ` N ) ) | 
						
							| 75 | 74 | ex |  |-  ( ( X gcd N ) = 1 -> ( ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) -> X e. ( FPPr ` N ) ) ) | 
						
							| 76 | 9 75 | impbid2 |  |-  ( ( X gcd N ) = 1 -> ( X e. ( FPPr ` N ) <-> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( N e. NN /\ ( ( N ^ X ) mod X ) = ( N mod X ) ) ) ) ) |