| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
|
fpprel |
|- ( 2 e. NN -> ( X e. ( FPPr ` 2 ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
| 3 |
1 2
|
mp1i |
|- ( X e. ( FPPr ` 2 ) -> ( X e. ( FPPr ` 2 ) <-> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) ) |
| 4 |
|
eluz4eluz2 |
|- ( X e. ( ZZ>= ` 4 ) -> X e. ( ZZ>= ` 2 ) ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) -> X e. ( ZZ>= ` 2 ) ) |
| 6 |
5
|
adantl |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> X e. ( ZZ>= ` 2 ) ) |
| 7 |
|
fppr2odd |
|- ( X e. ( FPPr ` 2 ) -> X e. Odd ) |
| 8 |
7
|
adantr |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> X e. Odd ) |
| 9 |
|
simpr2 |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> X e/ Prime ) |
| 10 |
6 8 9
|
3jca |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) ) |
| 11 |
|
fpprwppr |
|- ( X e. ( FPPr ` 2 ) -> ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) |
| 12 |
|
2re |
|- 2 e. RR |
| 13 |
12
|
a1i |
|- ( X e. ( ZZ>= ` 4 ) -> 2 e. RR ) |
| 14 |
|
eluz4nn |
|- ( X e. ( ZZ>= ` 4 ) -> X e. NN ) |
| 15 |
14
|
nnrpd |
|- ( X e. ( ZZ>= ` 4 ) -> X e. RR+ ) |
| 16 |
|
0le2 |
|- 0 <_ 2 |
| 17 |
16
|
a1i |
|- ( X e. ( ZZ>= ` 4 ) -> 0 <_ 2 ) |
| 18 |
|
eluz2 |
|- ( X e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) |
| 19 |
|
4z |
|- 4 e. ZZ |
| 20 |
|
zlem1lt |
|- ( ( 4 e. ZZ /\ X e. ZZ ) -> ( 4 <_ X <-> ( 4 - 1 ) < X ) ) |
| 21 |
19 20
|
mpan |
|- ( X e. ZZ -> ( 4 <_ X <-> ( 4 - 1 ) < X ) ) |
| 22 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
| 23 |
22
|
breq1i |
|- ( ( 4 - 1 ) < X <-> 3 < X ) |
| 24 |
12
|
a1i |
|- ( ( X e. ZZ /\ 3 < X ) -> 2 e. RR ) |
| 25 |
|
3re |
|- 3 e. RR |
| 26 |
25
|
a1i |
|- ( ( X e. ZZ /\ 3 < X ) -> 3 e. RR ) |
| 27 |
|
zre |
|- ( X e. ZZ -> X e. RR ) |
| 28 |
27
|
adantr |
|- ( ( X e. ZZ /\ 3 < X ) -> X e. RR ) |
| 29 |
|
2lt3 |
|- 2 < 3 |
| 30 |
29
|
a1i |
|- ( ( X e. ZZ /\ 3 < X ) -> 2 < 3 ) |
| 31 |
|
simpr |
|- ( ( X e. ZZ /\ 3 < X ) -> 3 < X ) |
| 32 |
24 26 28 30 31
|
lttrd |
|- ( ( X e. ZZ /\ 3 < X ) -> 2 < X ) |
| 33 |
32
|
ex |
|- ( X e. ZZ -> ( 3 < X -> 2 < X ) ) |
| 34 |
23 33
|
biimtrid |
|- ( X e. ZZ -> ( ( 4 - 1 ) < X -> 2 < X ) ) |
| 35 |
21 34
|
sylbid |
|- ( X e. ZZ -> ( 4 <_ X -> 2 < X ) ) |
| 36 |
35
|
a1i |
|- ( 4 e. ZZ -> ( X e. ZZ -> ( 4 <_ X -> 2 < X ) ) ) |
| 37 |
36
|
3imp |
|- ( ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) -> 2 < X ) |
| 38 |
18 37
|
sylbi |
|- ( X e. ( ZZ>= ` 4 ) -> 2 < X ) |
| 39 |
|
modid |
|- ( ( ( 2 e. RR /\ X e. RR+ ) /\ ( 0 <_ 2 /\ 2 < X ) ) -> ( 2 mod X ) = 2 ) |
| 40 |
13 15 17 38 39
|
syl22anc |
|- ( X e. ( ZZ>= ` 4 ) -> ( 2 mod X ) = 2 ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) -> ( 2 mod X ) = 2 ) |
| 42 |
11 41
|
sylan9eq |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> ( ( 2 ^ X ) mod X ) = 2 ) |
| 43 |
10 42
|
jca |
|- ( ( X e. ( FPPr ` 2 ) /\ ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) ) -> ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) ) |
| 44 |
43
|
ex |
|- ( X e. ( FPPr ` 2 ) -> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime /\ ( ( 2 ^ ( X - 1 ) ) mod X ) = 1 ) -> ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) ) ) |
| 45 |
3 44
|
sylbid |
|- ( X e. ( FPPr ` 2 ) -> ( X e. ( FPPr ` 2 ) -> ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) ) ) |
| 46 |
45
|
pm2.43i |
|- ( X e. ( FPPr ` 2 ) -> ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) ) |
| 47 |
|
ge2nprmge4 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e/ Prime ) -> X e. ( ZZ>= ` 4 ) ) |
| 48 |
47
|
3adant2 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> X e. ( ZZ>= ` 4 ) ) |
| 49 |
|
simp3 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> X e/ Prime ) |
| 50 |
48 49
|
jca |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) |
| 51 |
50
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) ) |
| 52 |
1
|
a1i |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> 2 e. NN ) |
| 53 |
12
|
a1i |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> 2 e. RR ) |
| 54 |
|
eluz2nn |
|- ( X e. ( ZZ>= ` 2 ) -> X e. NN ) |
| 55 |
54
|
nnrpd |
|- ( X e. ( ZZ>= ` 2 ) -> X e. RR+ ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> X e. RR+ ) |
| 57 |
16
|
a1i |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> 0 <_ 2 ) |
| 58 |
48 38
|
syl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> 2 < X ) |
| 59 |
53 56 57 58 39
|
syl22anc |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> ( 2 mod X ) = 2 ) |
| 60 |
59
|
eqcomd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> 2 = ( 2 mod X ) ) |
| 61 |
60
|
eqeq2d |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> ( ( ( 2 ^ X ) mod X ) = 2 <-> ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) ) |
| 62 |
61
|
biimpa |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) |
| 63 |
52 62
|
jca |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> ( 2 e. NN /\ ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) ) |
| 64 |
|
gcd2odd1 |
|- ( X e. Odd -> ( X gcd 2 ) = 1 ) |
| 65 |
64
|
3ad2ant2 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) -> ( X gcd 2 ) = 1 ) |
| 66 |
65
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> ( X gcd 2 ) = 1 ) |
| 67 |
|
fpprwpprb |
|- ( ( X gcd 2 ) = 1 -> ( X e. ( FPPr ` 2 ) <-> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( 2 e. NN /\ ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) ) ) ) |
| 68 |
66 67
|
syl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> ( X e. ( FPPr ` 2 ) <-> ( ( X e. ( ZZ>= ` 4 ) /\ X e/ Prime ) /\ ( 2 e. NN /\ ( ( 2 ^ X ) mod X ) = ( 2 mod X ) ) ) ) ) |
| 69 |
51 63 68
|
mpbir2and |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) -> X e. ( FPPr ` 2 ) ) |
| 70 |
46 69
|
impbii |
|- ( X e. ( FPPr ` 2 ) <-> ( ( X e. ( ZZ>= ` 2 ) /\ X e. Odd /\ X e/ Prime ) /\ ( ( 2 ^ X ) mod X ) = 2 ) ) |