| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | fpprel | ⊢ ( 2  ∈  ℕ  →  ( 𝑋  ∈  (  FPPr  ‘ 2 )  ↔  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) ) ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( 𝑋  ∈  (  FPPr  ‘ 2 )  ↔  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) ) ) | 
						
							| 4 |  | eluz4eluz2 | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  𝑋  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 )  →  𝑋  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  𝑋  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | fppr2odd | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  𝑋  ∈   Odd  ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  𝑋  ∈   Odd  ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  𝑋  ∉  ℙ ) | 
						
							| 10 | 6 8 9 | 3jca | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ ) ) | 
						
							| 11 |  | fpprwppr | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) | 
						
							| 12 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  2  ∈  ℝ ) | 
						
							| 14 |  | eluz4nn | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  𝑋  ∈  ℕ ) | 
						
							| 15 | 14 | nnrpd | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  𝑋  ∈  ℝ+ ) | 
						
							| 16 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  0  ≤  2 ) | 
						
							| 18 |  | eluz2 | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ↔  ( 4  ∈  ℤ  ∧  𝑋  ∈  ℤ  ∧  4  ≤  𝑋 ) ) | 
						
							| 19 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 20 |  | zlem1lt | ⊢ ( ( 4  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 4  ≤  𝑋  ↔  ( 4  −  1 )  <  𝑋 ) ) | 
						
							| 21 | 19 20 | mpan | ⊢ ( 𝑋  ∈  ℤ  →  ( 4  ≤  𝑋  ↔  ( 4  −  1 )  <  𝑋 ) ) | 
						
							| 22 |  | 4m1e3 | ⊢ ( 4  −  1 )  =  3 | 
						
							| 23 | 22 | breq1i | ⊢ ( ( 4  −  1 )  <  𝑋  ↔  3  <  𝑋 ) | 
						
							| 24 | 12 | a1i | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  2  ∈  ℝ ) | 
						
							| 25 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  3  ∈  ℝ ) | 
						
							| 27 |  | zre | ⊢ ( 𝑋  ∈  ℤ  →  𝑋  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 29 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  2  <  3 ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  3  <  𝑋 ) | 
						
							| 32 | 24 26 28 30 31 | lttrd | ⊢ ( ( 𝑋  ∈  ℤ  ∧  3  <  𝑋 )  →  2  <  𝑋 ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝑋  ∈  ℤ  →  ( 3  <  𝑋  →  2  <  𝑋 ) ) | 
						
							| 34 | 23 33 | biimtrid | ⊢ ( 𝑋  ∈  ℤ  →  ( ( 4  −  1 )  <  𝑋  →  2  <  𝑋 ) ) | 
						
							| 35 | 21 34 | sylbid | ⊢ ( 𝑋  ∈  ℤ  →  ( 4  ≤  𝑋  →  2  <  𝑋 ) ) | 
						
							| 36 | 35 | a1i | ⊢ ( 4  ∈  ℤ  →  ( 𝑋  ∈  ℤ  →  ( 4  ≤  𝑋  →  2  <  𝑋 ) ) ) | 
						
							| 37 | 36 | 3imp | ⊢ ( ( 4  ∈  ℤ  ∧  𝑋  ∈  ℤ  ∧  4  ≤  𝑋 )  →  2  <  𝑋 ) | 
						
							| 38 | 18 37 | sylbi | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  2  <  𝑋 ) | 
						
							| 39 |  | modid | ⊢ ( ( ( 2  ∈  ℝ  ∧  𝑋  ∈  ℝ+ )  ∧  ( 0  ≤  2  ∧  2  <  𝑋 ) )  →  ( 2  mod  𝑋 )  =  2 ) | 
						
							| 40 | 13 15 17 38 39 | syl22anc | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  →  ( 2  mod  𝑋 )  =  2 ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 )  →  ( 2  mod  𝑋 )  =  2 ) | 
						
							| 42 | 11 41 | sylan9eq | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) | 
						
							| 43 | 10 42 | jca | ⊢ ( ( 𝑋  ∈  (  FPPr  ‘ 2 )  ∧  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 ) )  →  ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ  ∧  ( ( 2 ↑ ( 𝑋  −  1 ) )  mod  𝑋 )  =  1 )  →  ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) ) ) | 
						
							| 45 | 3 44 | sylbid | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) ) ) | 
						
							| 46 | 45 | pm2.43i | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  →  ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) ) | 
						
							| 47 |  | ge2nprmge4 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∉  ℙ )  →  𝑋  ∈  ( ℤ≥ ‘ 4 ) ) | 
						
							| 48 | 47 | 3adant2 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  𝑋  ∈  ( ℤ≥ ‘ 4 ) ) | 
						
							| 49 |  | simp3 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  𝑋  ∉  ℙ ) | 
						
							| 50 | 48 49 | jca | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ ) ) | 
						
							| 52 | 1 | a1i | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  2  ∈  ℕ ) | 
						
							| 53 | 12 | a1i | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  2  ∈  ℝ ) | 
						
							| 54 |  | eluz2nn | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  →  𝑋  ∈  ℕ ) | 
						
							| 55 | 54 | nnrpd | ⊢ ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  →  𝑋  ∈  ℝ+ ) | 
						
							| 56 | 55 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  𝑋  ∈  ℝ+ ) | 
						
							| 57 | 16 | a1i | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  0  ≤  2 ) | 
						
							| 58 | 48 38 | syl | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  2  <  𝑋 ) | 
						
							| 59 | 53 56 57 58 39 | syl22anc | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  ( 2  mod  𝑋 )  =  2 ) | 
						
							| 60 | 59 | eqcomd | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  2  =  ( 2  mod  𝑋 ) ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  ( ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2  ↔  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) | 
						
							| 63 | 52 62 | jca | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  ( 2  ∈  ℕ  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) ) | 
						
							| 64 |  | gcd2odd1 | ⊢ ( 𝑋  ∈   Odd   →  ( 𝑋  gcd  2 )  =  1 ) | 
						
							| 65 | 64 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  →  ( 𝑋  gcd  2 )  =  1 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  ( 𝑋  gcd  2 )  =  1 ) | 
						
							| 67 |  | fpprwpprb | ⊢ ( ( 𝑋  gcd  2 )  =  1  →  ( 𝑋  ∈  (  FPPr  ‘ 2 )  ↔  ( ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ )  ∧  ( 2  ∈  ℕ  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) ) ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  ( 𝑋  ∈  (  FPPr  ‘ 2 )  ↔  ( ( 𝑋  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑋  ∉  ℙ )  ∧  ( 2  ∈  ℕ  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  ( 2  mod  𝑋 ) ) ) ) ) | 
						
							| 69 | 51 63 68 | mpbir2and | ⊢ ( ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 )  →  𝑋  ∈  (  FPPr  ‘ 2 ) ) | 
						
							| 70 | 46 69 | impbii | ⊢ ( 𝑋  ∈  (  FPPr  ‘ 2 )  ↔  ( ( 𝑋  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈   Odd   ∧  𝑋  ∉  ℙ )  ∧  ( ( 2 ↑ 𝑋 )  mod  𝑋 )  =  2 ) ) |