Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|
2 |
|
fpprel |
|
3 |
1 2
|
mp1i |
|
4 |
|
eluz4eluz2 |
|
5 |
4
|
3ad2ant1 |
|
6 |
5
|
adantl |
|
7 |
|
fppr2odd |
|
8 |
7
|
adantr |
|
9 |
|
simpr2 |
|
10 |
6 8 9
|
3jca |
|
11 |
|
fpprwppr |
|
12 |
|
2re |
|
13 |
12
|
a1i |
|
14 |
|
eluz4nn |
|
15 |
14
|
nnrpd |
|
16 |
|
0le2 |
|
17 |
16
|
a1i |
|
18 |
|
eluz2 |
|
19 |
|
4z |
|
20 |
|
zlem1lt |
|
21 |
19 20
|
mpan |
|
22 |
|
4m1e3 |
|
23 |
22
|
breq1i |
|
24 |
12
|
a1i |
|
25 |
|
3re |
|
26 |
25
|
a1i |
|
27 |
|
zre |
|
28 |
27
|
adantr |
|
29 |
|
2lt3 |
|
30 |
29
|
a1i |
|
31 |
|
simpr |
|
32 |
24 26 28 30 31
|
lttrd |
|
33 |
32
|
ex |
|
34 |
23 33
|
syl5bi |
|
35 |
21 34
|
sylbid |
|
36 |
35
|
a1i |
|
37 |
36
|
3imp |
|
38 |
18 37
|
sylbi |
|
39 |
|
modid |
|
40 |
13 15 17 38 39
|
syl22anc |
|
41 |
40
|
3ad2ant1 |
|
42 |
11 41
|
sylan9eq |
|
43 |
10 42
|
jca |
|
44 |
43
|
ex |
|
45 |
3 44
|
sylbid |
|
46 |
45
|
pm2.43i |
|
47 |
|
ge2nprmge4 |
|
48 |
47
|
3adant2 |
|
49 |
|
simp3 |
|
50 |
48 49
|
jca |
|
51 |
50
|
adantr |
|
52 |
1
|
a1i |
|
53 |
12
|
a1i |
|
54 |
|
eluz2nn |
|
55 |
54
|
nnrpd |
|
56 |
55
|
3ad2ant1 |
|
57 |
16
|
a1i |
|
58 |
48 38
|
syl |
|
59 |
53 56 57 58 39
|
syl22anc |
|
60 |
59
|
eqcomd |
|
61 |
60
|
eqeq2d |
|
62 |
61
|
biimpa |
|
63 |
52 62
|
jca |
|
64 |
|
gcd2odd1 |
|
65 |
64
|
3ad2ant2 |
|
66 |
65
|
adantr |
|
67 |
|
fpprwpprb |
|
68 |
66 67
|
syl |
|
69 |
51 63 68
|
mpbir2and |
|
70 |
46 69
|
impbii |
|