| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 2 | 1 | elexi | ⊢ 9  ∈  V | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑝  =  9  →  ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ↔  9  ∈  ( ℤ≥ ‘ 3 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑝  =  9  →  ( 8 ↑ 𝑝 )  =  ( 8 ↑ 9 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑝  =  9  →  𝑝  =  9 ) | 
						
							| 6 | 4 5 | oveq12d | ⊢ ( 𝑝  =  9  →  ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( ( 8 ↑ 9 )  mod  9 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑝  =  9  →  ( 8  mod  𝑝 )  =  ( 8  mod  9 ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑝  =  9  →  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  ↔  ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 ) ) ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑝  =  9  →  ( 𝑝  ∈  ℙ  ↔  9  ∈  ℙ ) ) | 
						
							| 10 | 8 9 | imbi12d | ⊢ ( 𝑝  =  9  →  ( ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ )  ↔  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( 𝑝  =  9  →  ( ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ )  ↔  ¬  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) ) ) | 
						
							| 12 | 3 11 | anbi12d | ⊢ ( 𝑝  =  9  →  ( ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ ) )  ↔  ( 9  ∈  ( ℤ≥ ‘ 3 )  ∧  ¬  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) ) ) ) | 
						
							| 13 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 14 | 1 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 15 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 16 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 17 |  | 3lt9 | ⊢ 3  <  9 | 
						
							| 18 | 15 16 17 | ltleii | ⊢ 3  ≤  9 | 
						
							| 19 |  | eluz2 | ⊢ ( 9  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  9  ∈  ℤ  ∧  3  ≤  9 ) ) | 
						
							| 20 | 13 14 18 19 | mpbir3an | ⊢ 9  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 21 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 22 |  | 8nn0 | ⊢ 8  ∈  ℕ0 | 
						
							| 23 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 24 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 25 |  | 8exp8mod9 | ⊢ ( ( 8 ↑ 8 )  mod  9 )  =  1 | 
						
							| 26 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 27 |  | nnrp | ⊢ ( 9  ∈  ℕ  →  9  ∈  ℝ+ ) | 
						
							| 28 | 1 27 | ax-mp | ⊢ 9  ∈  ℝ+ | 
						
							| 29 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 30 |  | 1lt9 | ⊢ 1  <  9 | 
						
							| 31 |  | modid | ⊢ ( ( ( 1  ∈  ℝ  ∧  9  ∈  ℝ+ )  ∧  ( 0  ≤  1  ∧  1  <  9 ) )  →  ( 1  mod  9 )  =  1 ) | 
						
							| 32 | 26 28 29 30 31 | mp4an | ⊢ ( 1  mod  9 )  =  1 | 
						
							| 33 | 25 32 | eqtr4i | ⊢ ( ( 8 ↑ 8 )  mod  9 )  =  ( 1  mod  9 ) | 
						
							| 34 |  | 8p1e9 | ⊢ ( 8  +  1 )  =  9 | 
						
							| 35 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 36 | 35 | addlidi | ⊢ ( 0  +  8 )  =  8 | 
						
							| 37 |  | 9cn | ⊢ 9  ∈  ℂ | 
						
							| 38 | 37 | mul02i | ⊢ ( 0  ·  9 )  =  0 | 
						
							| 39 | 38 | oveq1i | ⊢ ( ( 0  ·  9 )  +  8 )  =  ( 0  +  8 ) | 
						
							| 40 | 35 | mullidi | ⊢ ( 1  ·  8 )  =  8 | 
						
							| 41 | 36 39 40 | 3eqtr4i | ⊢ ( ( 0  ·  9 )  +  8 )  =  ( 1  ·  8 ) | 
						
							| 42 | 1 21 22 23 24 22 33 34 41 | modxp1i | ⊢ ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 ) | 
						
							| 43 |  | 9nprm | ⊢ ¬  9  ∈  ℙ | 
						
							| 44 | 42 43 | pm3.2i | ⊢ ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  ∧  ¬  9  ∈  ℙ ) | 
						
							| 45 |  | annim | ⊢ ( ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  ∧  ¬  9  ∈  ℙ )  ↔  ¬  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) ) | 
						
							| 46 | 44 45 | mpbi | ⊢ ¬  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) | 
						
							| 47 | 20 46 | pm3.2i | ⊢ ( 9  ∈  ( ℤ≥ ‘ 3 )  ∧  ¬  ( ( ( 8 ↑ 9 )  mod  9 )  =  ( 8  mod  9 )  →  9  ∈  ℙ ) ) | 
						
							| 48 | 2 12 47 | ceqsexv2d | ⊢ ∃ 𝑝 ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ ) ) | 
						
							| 49 |  | df-rex | ⊢ ( ∃ 𝑝  ∈  ( ℤ≥ ‘ 3 ) ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ )  ↔  ∃ 𝑝 ( 𝑝  ∈  ( ℤ≥ ‘ 3 )  ∧  ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ ) ) ) | 
						
							| 50 | 48 49 | mpbir | ⊢ ∃ 𝑝  ∈  ( ℤ≥ ‘ 3 ) ¬  ( ( ( 8 ↑ 𝑝 )  mod  𝑝 )  =  ( 8  mod  𝑝 )  →  𝑝  ∈  ℙ ) |