| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 2 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 3 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 4 | 3 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 5 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 6 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 7 |  | 4lt9 | ⊢ 4  <  9 | 
						
							| 8 | 5 6 7 | ltleii | ⊢ 4  ≤  9 | 
						
							| 9 |  | eluz2 | ⊢ ( 9  ∈  ( ℤ≥ ‘ 4 )  ↔  ( 4  ∈  ℤ  ∧  9  ∈  ℤ  ∧  4  ≤  9 ) ) | 
						
							| 10 | 2 4 8 9 | mpbir3an | ⊢ 9  ∈  ( ℤ≥ ‘ 4 ) | 
						
							| 11 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 12 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 13 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 14 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 15 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 16 | 13 14 15 | ltleii | ⊢ 2  ≤  3 | 
						
							| 17 |  | eluz2 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  3  ∈  ℤ  ∧  2  ≤  3 ) ) | 
						
							| 18 | 11 12 16 17 | mpbir3an | ⊢ 3  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 19 |  | nprm | ⊢ ( ( 3  ∈  ( ℤ≥ ‘ 2 )  ∧  3  ∈  ( ℤ≥ ‘ 2 ) )  →  ¬  ( 3  ·  3 )  ∈  ℙ ) | 
						
							| 20 | 18 18 19 | mp2an | ⊢ ¬  ( 3  ·  3 )  ∈  ℙ | 
						
							| 21 |  | df-nel | ⊢ ( 9  ∉  ℙ  ↔  ¬  9  ∈  ℙ ) | 
						
							| 22 |  | 3t3e9 | ⊢ ( 3  ·  3 )  =  9 | 
						
							| 23 | 22 | eqcomi | ⊢ 9  =  ( 3  ·  3 ) | 
						
							| 24 | 23 | eleq1i | ⊢ ( 9  ∈  ℙ  ↔  ( 3  ·  3 )  ∈  ℙ ) | 
						
							| 25 | 21 24 | xchbinx | ⊢ ( 9  ∉  ℙ  ↔  ¬  ( 3  ·  3 )  ∈  ℙ ) | 
						
							| 26 | 20 25 | mpbir | ⊢ 9  ∉  ℙ | 
						
							| 27 |  | 9m1e8 | ⊢ ( 9  −  1 )  =  8 | 
						
							| 28 | 27 | oveq2i | ⊢ ( 8 ↑ ( 9  −  1 ) )  =  ( 8 ↑ 8 ) | 
						
							| 29 | 28 | oveq1i | ⊢ ( ( 8 ↑ ( 9  −  1 ) )  mod  9 )  =  ( ( 8 ↑ 8 )  mod  9 ) | 
						
							| 30 |  | 8exp8mod9 | ⊢ ( ( 8 ↑ 8 )  mod  9 )  =  1 | 
						
							| 31 | 29 30 | eqtri | ⊢ ( ( 8 ↑ ( 9  −  1 ) )  mod  9 )  =  1 | 
						
							| 32 | 10 26 31 | 3pm3.2i | ⊢ ( 9  ∈  ( ℤ≥ ‘ 4 )  ∧  9  ∉  ℙ  ∧  ( ( 8 ↑ ( 9  −  1 ) )  mod  9 )  =  1 ) | 
						
							| 33 |  | fpprel | ⊢ ( 8  ∈  ℕ  →  ( 9  ∈  (  FPPr  ‘ 8 )  ↔  ( 9  ∈  ( ℤ≥ ‘ 4 )  ∧  9  ∉  ℙ  ∧  ( ( 8 ↑ ( 9  −  1 ) )  mod  9 )  =  1 ) ) ) | 
						
							| 34 | 32 33 | mpbiri | ⊢ ( 8  ∈  ℕ  →  9  ∈  (  FPPr  ‘ 8 ) ) | 
						
							| 35 | 1 34 | ax-mp | ⊢ 9  ∈  (  FPPr  ‘ 8 ) |