Metamath Proof Explorer


Theorem 8exp8mod9

Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023)

Ref Expression
Assertion 8exp8mod9 ( ( 8 ↑ 8 ) mod 9 ) = 1

Proof

Step Hyp Ref Expression
1 9nn 9 ∈ ℕ
2 8nn 8 ∈ ℕ
3 4nn0 4 ∈ ℕ0
4 0z 0 ∈ ℤ
5 1nn0 1 ∈ ℕ0
6 2nn0 2 ∈ ℕ0
7 7nn 7 ∈ ℕ
8 7 nnzi 7 ∈ ℤ
9 8nn0 8 ∈ ℕ0
10 8cn 8 ∈ ℂ
11 exp1 ( 8 ∈ ℂ → ( 8 ↑ 1 ) = 8 )
12 10 11 ax-mp ( 8 ↑ 1 ) = 8
13 12 oveq1i ( ( 8 ↑ 1 ) mod 9 ) = ( 8 mod 9 )
14 2t1e2 ( 2 · 1 ) = 2
15 6nn0 6 ∈ ℕ0
16 3nn0 3 ∈ ℕ0
17 3p1e4 ( 3 + 1 ) = 4
18 eqid 6 3 = 6 3
19 15 16 17 18 decsuc ( 6 3 + 1 ) = 6 4
20 9cn 9 ∈ ℂ
21 7cn 7 ∈ ℂ
22 9t7e63 ( 9 · 7 ) = 6 3
23 20 21 22 mulcomli ( 7 · 9 ) = 6 3
24 23 oveq1i ( ( 7 · 9 ) + 1 ) = ( 6 3 + 1 )
25 8t8e64 ( 8 · 8 ) = 6 4
26 19 24 25 3eqtr4i ( ( 7 · 9 ) + 1 ) = ( 8 · 8 )
27 1 2 5 8 9 5 13 14 26 mod2xi ( ( 8 ↑ 2 ) mod 9 ) = ( 1 mod 9 )
28 2t2e4 ( 2 · 2 ) = 4
29 0p1e1 ( 0 + 1 ) = 1
30 20 mul02i ( 0 · 9 ) = 0
31 30 oveq1i ( ( 0 · 9 ) + 1 ) = ( 0 + 1 )
32 1t1e1 ( 1 · 1 ) = 1
33 29 31 32 3eqtr4i ( ( 0 · 9 ) + 1 ) = ( 1 · 1 )
34 1 2 6 4 5 5 27 28 33 mod2xi ( ( 8 ↑ 4 ) mod 9 ) = ( 1 mod 9 )
35 4cn 4 ∈ ℂ
36 2cn 2 ∈ ℂ
37 4t2e8 ( 4 · 2 ) = 8
38 35 36 37 mulcomli ( 2 · 4 ) = 8
39 1 2 3 4 5 5 34 38 33 mod2xi ( ( 8 ↑ 8 ) mod 9 ) = ( 1 mod 9 )
40 1re 1 ∈ ℝ
41 nnrp ( 9 ∈ ℕ → 9 ∈ ℝ+ )
42 1 41 ax-mp 9 ∈ ℝ+
43 0le1 0 ≤ 1
44 1lt9 1 < 9
45 modid ( ( ( 1 ∈ ℝ ∧ 9 ∈ ℝ+ ) ∧ ( 0 ≤ 1 ∧ 1 < 9 ) ) → ( 1 mod 9 ) = 1 )
46 40 42 43 44 45 mp4an ( 1 mod 9 ) = 1
47 39 46 eqtri ( ( 8 ↑ 8 ) mod 9 ) = 1