Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 8exp8mod9 | ⊢ ( ( 8 ↑ 8 ) mod 9 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn | ⊢ 9 ∈ ℕ | |
2 | 8nn | ⊢ 8 ∈ ℕ | |
3 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
4 | 0z | ⊢ 0 ∈ ℤ | |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
7 | 7nn | ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi | ⊢ 7 ∈ ℤ |
9 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
10 | 8cn | ⊢ 8 ∈ ℂ | |
11 | exp1 | ⊢ ( 8 ∈ ℂ → ( 8 ↑ 1 ) = 8 ) | |
12 | 10 11 | ax-mp | ⊢ ( 8 ↑ 1 ) = 8 |
13 | 12 | oveq1i | ⊢ ( ( 8 ↑ 1 ) mod 9 ) = ( 8 mod 9 ) |
14 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
15 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
18 | eqid | ⊢ ; 6 3 = ; 6 3 | |
19 | 15 16 17 18 | decsuc | ⊢ ( ; 6 3 + 1 ) = ; 6 4 |
20 | 9cn | ⊢ 9 ∈ ℂ | |
21 | 7cn | ⊢ 7 ∈ ℂ | |
22 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
23 | 20 21 22 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
24 | 23 | oveq1i | ⊢ ( ( 7 · 9 ) + 1 ) = ( ; 6 3 + 1 ) |
25 | 8t8e64 | ⊢ ( 8 · 8 ) = ; 6 4 | |
26 | 19 24 25 | 3eqtr4i | ⊢ ( ( 7 · 9 ) + 1 ) = ( 8 · 8 ) |
27 | 1 2 5 8 9 5 13 14 26 | mod2xi | ⊢ ( ( 8 ↑ 2 ) mod 9 ) = ( 1 mod 9 ) |
28 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
29 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
30 | 20 | mul02i | ⊢ ( 0 · 9 ) = 0 |
31 | 30 | oveq1i | ⊢ ( ( 0 · 9 ) + 1 ) = ( 0 + 1 ) |
32 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
33 | 29 31 32 | 3eqtr4i | ⊢ ( ( 0 · 9 ) + 1 ) = ( 1 · 1 ) |
34 | 1 2 6 4 5 5 27 28 33 | mod2xi | ⊢ ( ( 8 ↑ 4 ) mod 9 ) = ( 1 mod 9 ) |
35 | 4cn | ⊢ 4 ∈ ℂ | |
36 | 2cn | ⊢ 2 ∈ ℂ | |
37 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
38 | 35 36 37 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
39 | 1 2 3 4 5 5 34 38 33 | mod2xi | ⊢ ( ( 8 ↑ 8 ) mod 9 ) = ( 1 mod 9 ) |
40 | 1re | ⊢ 1 ∈ ℝ | |
41 | nnrp | ⊢ ( 9 ∈ ℕ → 9 ∈ ℝ+ ) | |
42 | 1 41 | ax-mp | ⊢ 9 ∈ ℝ+ |
43 | 0le1 | ⊢ 0 ≤ 1 | |
44 | 1lt9 | ⊢ 1 < 9 | |
45 | modid | ⊢ ( ( ( 1 ∈ ℝ ∧ 9 ∈ ℝ+ ) ∧ ( 0 ≤ 1 ∧ 1 < 9 ) ) → ( 1 mod 9 ) = 1 ) | |
46 | 40 42 43 44 45 | mp4an | ⊢ ( 1 mod 9 ) = 1 |
47 | 39 46 | eqtri | ⊢ ( ( 8 ↑ 8 ) mod 9 ) = 1 |