Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 8exp8mod9 | |- ( ( 8 ^ 8 ) mod 9 ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 9nn | |- 9 e. NN | |
| 2 | 8nn | |- 8 e. NN | |
| 3 | 4nn0 | |- 4 e. NN0 | |
| 4 | 0z | |- 0 e. ZZ | |
| 5 | 1nn0 | |- 1 e. NN0 | |
| 6 | 2nn0 | |- 2 e. NN0 | |
| 7 | 7nn | |- 7 e. NN | |
| 8 | 7 | nnzi | |- 7 e. ZZ | 
| 9 | 8nn0 | |- 8 e. NN0 | |
| 10 | 8cn | |- 8 e. CC | |
| 11 | exp1 | |- ( 8 e. CC -> ( 8 ^ 1 ) = 8 ) | |
| 12 | 10 11 | ax-mp | |- ( 8 ^ 1 ) = 8 | 
| 13 | 12 | oveq1i | |- ( ( 8 ^ 1 ) mod 9 ) = ( 8 mod 9 ) | 
| 14 | 2t1e2 | |- ( 2 x. 1 ) = 2 | |
| 15 | 6nn0 | |- 6 e. NN0 | |
| 16 | 3nn0 | |- 3 e. NN0 | |
| 17 | 3p1e4 | |- ( 3 + 1 ) = 4 | |
| 18 | eqid | |- ; 6 3 = ; 6 3 | |
| 19 | 15 16 17 18 | decsuc | |- ( ; 6 3 + 1 ) = ; 6 4 | 
| 20 | 9cn | |- 9 e. CC | |
| 21 | 7cn | |- 7 e. CC | |
| 22 | 9t7e63 | |- ( 9 x. 7 ) = ; 6 3 | |
| 23 | 20 21 22 | mulcomli | |- ( 7 x. 9 ) = ; 6 3 | 
| 24 | 23 | oveq1i | |- ( ( 7 x. 9 ) + 1 ) = ( ; 6 3 + 1 ) | 
| 25 | 8t8e64 | |- ( 8 x. 8 ) = ; 6 4 | |
| 26 | 19 24 25 | 3eqtr4i | |- ( ( 7 x. 9 ) + 1 ) = ( 8 x. 8 ) | 
| 27 | 1 2 5 8 9 5 13 14 26 | mod2xi | |- ( ( 8 ^ 2 ) mod 9 ) = ( 1 mod 9 ) | 
| 28 | 2t2e4 | |- ( 2 x. 2 ) = 4 | |
| 29 | 0p1e1 | |- ( 0 + 1 ) = 1 | |
| 30 | 20 | mul02i | |- ( 0 x. 9 ) = 0 | 
| 31 | 30 | oveq1i | |- ( ( 0 x. 9 ) + 1 ) = ( 0 + 1 ) | 
| 32 | 1t1e1 | |- ( 1 x. 1 ) = 1 | |
| 33 | 29 31 32 | 3eqtr4i | |- ( ( 0 x. 9 ) + 1 ) = ( 1 x. 1 ) | 
| 34 | 1 2 6 4 5 5 27 28 33 | mod2xi | |- ( ( 8 ^ 4 ) mod 9 ) = ( 1 mod 9 ) | 
| 35 | 4cn | |- 4 e. CC | |
| 36 | 2cn | |- 2 e. CC | |
| 37 | 4t2e8 | |- ( 4 x. 2 ) = 8 | |
| 38 | 35 36 37 | mulcomli | |- ( 2 x. 4 ) = 8 | 
| 39 | 1 2 3 4 5 5 34 38 33 | mod2xi | |- ( ( 8 ^ 8 ) mod 9 ) = ( 1 mod 9 ) | 
| 40 | 1re | |- 1 e. RR | |
| 41 | nnrp | |- ( 9 e. NN -> 9 e. RR+ ) | |
| 42 | 1 41 | ax-mp | |- 9 e. RR+ | 
| 43 | 0le1 | |- 0 <_ 1 | |
| 44 | 1lt9 | |- 1 < 9 | |
| 45 | modid | |- ( ( ( 1 e. RR /\ 9 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 9 ) ) -> ( 1 mod 9 ) = 1 ) | |
| 46 | 40 42 43 44 45 | mp4an | |- ( 1 mod 9 ) = 1 | 
| 47 | 39 46 | eqtri | |- ( ( 8 ^ 8 ) mod 9 ) = 1 |