| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 8nn |  |-  8 e. NN | 
						
							| 2 |  | 4z |  |-  4 e. ZZ | 
						
							| 3 |  | 9nn |  |-  9 e. NN | 
						
							| 4 | 3 | nnzi |  |-  9 e. ZZ | 
						
							| 5 |  | 4re |  |-  4 e. RR | 
						
							| 6 |  | 9re |  |-  9 e. RR | 
						
							| 7 |  | 4lt9 |  |-  4 < 9 | 
						
							| 8 | 5 6 7 | ltleii |  |-  4 <_ 9 | 
						
							| 9 |  | eluz2 |  |-  ( 9 e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ 9 e. ZZ /\ 4 <_ 9 ) ) | 
						
							| 10 | 2 4 8 9 | mpbir3an |  |-  9 e. ( ZZ>= ` 4 ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 |  | 3z |  |-  3 e. ZZ | 
						
							| 13 |  | 2re |  |-  2 e. RR | 
						
							| 14 |  | 3re |  |-  3 e. RR | 
						
							| 15 |  | 2lt3 |  |-  2 < 3 | 
						
							| 16 | 13 14 15 | ltleii |  |-  2 <_ 3 | 
						
							| 17 |  | eluz2 |  |-  ( 3 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 3 e. ZZ /\ 2 <_ 3 ) ) | 
						
							| 18 | 11 12 16 17 | mpbir3an |  |-  3 e. ( ZZ>= ` 2 ) | 
						
							| 19 |  | nprm |  |-  ( ( 3 e. ( ZZ>= ` 2 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> -. ( 3 x. 3 ) e. Prime ) | 
						
							| 20 | 18 18 19 | mp2an |  |-  -. ( 3 x. 3 ) e. Prime | 
						
							| 21 |  | df-nel |  |-  ( 9 e/ Prime <-> -. 9 e. Prime ) | 
						
							| 22 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 23 | 22 | eqcomi |  |-  9 = ( 3 x. 3 ) | 
						
							| 24 | 23 | eleq1i |  |-  ( 9 e. Prime <-> ( 3 x. 3 ) e. Prime ) | 
						
							| 25 | 21 24 | xchbinx |  |-  ( 9 e/ Prime <-> -. ( 3 x. 3 ) e. Prime ) | 
						
							| 26 | 20 25 | mpbir |  |-  9 e/ Prime | 
						
							| 27 |  | 9m1e8 |  |-  ( 9 - 1 ) = 8 | 
						
							| 28 | 27 | oveq2i |  |-  ( 8 ^ ( 9 - 1 ) ) = ( 8 ^ 8 ) | 
						
							| 29 | 28 | oveq1i |  |-  ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = ( ( 8 ^ 8 ) mod 9 ) | 
						
							| 30 |  | 8exp8mod9 |  |-  ( ( 8 ^ 8 ) mod 9 ) = 1 | 
						
							| 31 | 29 30 | eqtri |  |-  ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 | 
						
							| 32 | 10 26 31 | 3pm3.2i |  |-  ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) | 
						
							| 33 |  | fpprel |  |-  ( 8 e. NN -> ( 9 e. ( FPPr ` 8 ) <-> ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) ) ) | 
						
							| 34 | 32 33 | mpbiri |  |-  ( 8 e. NN -> 9 e. ( FPPr ` 8 ) ) | 
						
							| 35 | 1 34 | ax-mp |  |-  9 e. ( FPPr ` 8 ) |