| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8nn |
|- 8 e. NN |
| 2 |
|
4z |
|- 4 e. ZZ |
| 3 |
|
9nn |
|- 9 e. NN |
| 4 |
3
|
nnzi |
|- 9 e. ZZ |
| 5 |
|
4re |
|- 4 e. RR |
| 6 |
|
9re |
|- 9 e. RR |
| 7 |
|
4lt9 |
|- 4 < 9 |
| 8 |
5 6 7
|
ltleii |
|- 4 <_ 9 |
| 9 |
|
eluz2 |
|- ( 9 e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ 9 e. ZZ /\ 4 <_ 9 ) ) |
| 10 |
2 4 8 9
|
mpbir3an |
|- 9 e. ( ZZ>= ` 4 ) |
| 11 |
|
2z |
|- 2 e. ZZ |
| 12 |
|
3z |
|- 3 e. ZZ |
| 13 |
|
2re |
|- 2 e. RR |
| 14 |
|
3re |
|- 3 e. RR |
| 15 |
|
2lt3 |
|- 2 < 3 |
| 16 |
13 14 15
|
ltleii |
|- 2 <_ 3 |
| 17 |
|
eluz2 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 3 e. ZZ /\ 2 <_ 3 ) ) |
| 18 |
11 12 16 17
|
mpbir3an |
|- 3 e. ( ZZ>= ` 2 ) |
| 19 |
|
nprm |
|- ( ( 3 e. ( ZZ>= ` 2 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> -. ( 3 x. 3 ) e. Prime ) |
| 20 |
18 18 19
|
mp2an |
|- -. ( 3 x. 3 ) e. Prime |
| 21 |
|
df-nel |
|- ( 9 e/ Prime <-> -. 9 e. Prime ) |
| 22 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
| 23 |
22
|
eqcomi |
|- 9 = ( 3 x. 3 ) |
| 24 |
23
|
eleq1i |
|- ( 9 e. Prime <-> ( 3 x. 3 ) e. Prime ) |
| 25 |
21 24
|
xchbinx |
|- ( 9 e/ Prime <-> -. ( 3 x. 3 ) e. Prime ) |
| 26 |
20 25
|
mpbir |
|- 9 e/ Prime |
| 27 |
|
9m1e8 |
|- ( 9 - 1 ) = 8 |
| 28 |
27
|
oveq2i |
|- ( 8 ^ ( 9 - 1 ) ) = ( 8 ^ 8 ) |
| 29 |
28
|
oveq1i |
|- ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = ( ( 8 ^ 8 ) mod 9 ) |
| 30 |
|
8exp8mod9 |
|- ( ( 8 ^ 8 ) mod 9 ) = 1 |
| 31 |
29 30
|
eqtri |
|- ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 |
| 32 |
10 26 31
|
3pm3.2i |
|- ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) |
| 33 |
|
fpprel |
|- ( 8 e. NN -> ( 9 e. ( FPPr ` 8 ) <-> ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) ) ) |
| 34 |
32 33
|
mpbiri |
|- ( 8 e. NN -> 9 e. ( FPPr ` 8 ) ) |
| 35 |
1 34
|
ax-mp |
|- 9 e. ( FPPr ` 8 ) |