Step |
Hyp |
Ref |
Expression |
1 |
|
8nn |
|- 8 e. NN |
2 |
|
4z |
|- 4 e. ZZ |
3 |
|
9nn |
|- 9 e. NN |
4 |
3
|
nnzi |
|- 9 e. ZZ |
5 |
|
4re |
|- 4 e. RR |
6 |
|
9re |
|- 9 e. RR |
7 |
|
4lt9 |
|- 4 < 9 |
8 |
5 6 7
|
ltleii |
|- 4 <_ 9 |
9 |
|
eluz2 |
|- ( 9 e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ 9 e. ZZ /\ 4 <_ 9 ) ) |
10 |
2 4 8 9
|
mpbir3an |
|- 9 e. ( ZZ>= ` 4 ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
3z |
|- 3 e. ZZ |
13 |
|
2re |
|- 2 e. RR |
14 |
|
3re |
|- 3 e. RR |
15 |
|
2lt3 |
|- 2 < 3 |
16 |
13 14 15
|
ltleii |
|- 2 <_ 3 |
17 |
|
eluz2 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 3 e. ZZ /\ 2 <_ 3 ) ) |
18 |
11 12 16 17
|
mpbir3an |
|- 3 e. ( ZZ>= ` 2 ) |
19 |
|
nprm |
|- ( ( 3 e. ( ZZ>= ` 2 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> -. ( 3 x. 3 ) e. Prime ) |
20 |
18 18 19
|
mp2an |
|- -. ( 3 x. 3 ) e. Prime |
21 |
|
df-nel |
|- ( 9 e/ Prime <-> -. 9 e. Prime ) |
22 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
23 |
22
|
eqcomi |
|- 9 = ( 3 x. 3 ) |
24 |
23
|
eleq1i |
|- ( 9 e. Prime <-> ( 3 x. 3 ) e. Prime ) |
25 |
21 24
|
xchbinx |
|- ( 9 e/ Prime <-> -. ( 3 x. 3 ) e. Prime ) |
26 |
20 25
|
mpbir |
|- 9 e/ Prime |
27 |
|
9m1e8 |
|- ( 9 - 1 ) = 8 |
28 |
27
|
oveq2i |
|- ( 8 ^ ( 9 - 1 ) ) = ( 8 ^ 8 ) |
29 |
28
|
oveq1i |
|- ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = ( ( 8 ^ 8 ) mod 9 ) |
30 |
|
8exp8mod9 |
|- ( ( 8 ^ 8 ) mod 9 ) = 1 |
31 |
29 30
|
eqtri |
|- ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 |
32 |
10 26 31
|
3pm3.2i |
|- ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) |
33 |
|
fpprel |
|- ( 8 e. NN -> ( 9 e. ( FPPr ` 8 ) <-> ( 9 e. ( ZZ>= ` 4 ) /\ 9 e/ Prime /\ ( ( 8 ^ ( 9 - 1 ) ) mod 9 ) = 1 ) ) ) |
34 |
32 33
|
mpbiri |
|- ( 8 e. NN -> 9 e. ( FPPr ` 8 ) ) |
35 |
1 34
|
ax-mp |
|- 9 e. ( FPPr ` 8 ) |