| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 9nn |  |-  9 e. NN | 
						
							| 2 | 1 | elexi |  |-  9 e. _V | 
						
							| 3 |  | eleq1 |  |-  ( p = 9 -> ( p e. ( ZZ>= ` 3 ) <-> 9 e. ( ZZ>= ` 3 ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( p = 9 -> ( 8 ^ p ) = ( 8 ^ 9 ) ) | 
						
							| 5 |  | id |  |-  ( p = 9 -> p = 9 ) | 
						
							| 6 | 4 5 | oveq12d |  |-  ( p = 9 -> ( ( 8 ^ p ) mod p ) = ( ( 8 ^ 9 ) mod 9 ) ) | 
						
							| 7 |  | oveq2 |  |-  ( p = 9 -> ( 8 mod p ) = ( 8 mod 9 ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( p = 9 -> ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) <-> ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) ) ) | 
						
							| 9 |  | eleq1 |  |-  ( p = 9 -> ( p e. Prime <-> 9 e. Prime ) ) | 
						
							| 10 | 8 9 | imbi12d |  |-  ( p = 9 -> ( ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) | 
						
							| 11 | 10 | notbid |  |-  ( p = 9 -> ( -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) | 
						
							| 12 | 3 11 | anbi12d |  |-  ( p = 9 -> ( ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) <-> ( 9 e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) ) | 
						
							| 13 |  | 3z |  |-  3 e. ZZ | 
						
							| 14 | 1 | nnzi |  |-  9 e. ZZ | 
						
							| 15 |  | 3re |  |-  3 e. RR | 
						
							| 16 |  | 9re |  |-  9 e. RR | 
						
							| 17 |  | 3lt9 |  |-  3 < 9 | 
						
							| 18 | 15 16 17 | ltleii |  |-  3 <_ 9 | 
						
							| 19 |  | eluz2 |  |-  ( 9 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 9 e. ZZ /\ 3 <_ 9 ) ) | 
						
							| 20 | 13 14 18 19 | mpbir3an |  |-  9 e. ( ZZ>= ` 3 ) | 
						
							| 21 |  | 8nn |  |-  8 e. NN | 
						
							| 22 |  | 8nn0 |  |-  8 e. NN0 | 
						
							| 23 |  | 0z |  |-  0 e. ZZ | 
						
							| 24 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 25 |  | 8exp8mod9 |  |-  ( ( 8 ^ 8 ) mod 9 ) = 1 | 
						
							| 26 |  | 1re |  |-  1 e. RR | 
						
							| 27 |  | nnrp |  |-  ( 9 e. NN -> 9 e. RR+ ) | 
						
							| 28 | 1 27 | ax-mp |  |-  9 e. RR+ | 
						
							| 29 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 30 |  | 1lt9 |  |-  1 < 9 | 
						
							| 31 |  | modid |  |-  ( ( ( 1 e. RR /\ 9 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 9 ) ) -> ( 1 mod 9 ) = 1 ) | 
						
							| 32 | 26 28 29 30 31 | mp4an |  |-  ( 1 mod 9 ) = 1 | 
						
							| 33 | 25 32 | eqtr4i |  |-  ( ( 8 ^ 8 ) mod 9 ) = ( 1 mod 9 ) | 
						
							| 34 |  | 8p1e9 |  |-  ( 8 + 1 ) = 9 | 
						
							| 35 |  | 8cn |  |-  8 e. CC | 
						
							| 36 | 35 | addlidi |  |-  ( 0 + 8 ) = 8 | 
						
							| 37 |  | 9cn |  |-  9 e. CC | 
						
							| 38 | 37 | mul02i |  |-  ( 0 x. 9 ) = 0 | 
						
							| 39 | 38 | oveq1i |  |-  ( ( 0 x. 9 ) + 8 ) = ( 0 + 8 ) | 
						
							| 40 | 35 | mullidi |  |-  ( 1 x. 8 ) = 8 | 
						
							| 41 | 36 39 40 | 3eqtr4i |  |-  ( ( 0 x. 9 ) + 8 ) = ( 1 x. 8 ) | 
						
							| 42 | 1 21 22 23 24 22 33 34 41 | modxp1i |  |-  ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) | 
						
							| 43 |  | 9nprm |  |-  -. 9 e. Prime | 
						
							| 44 | 42 43 | pm3.2i |  |-  ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) /\ -. 9 e. Prime ) | 
						
							| 45 |  | annim |  |-  ( ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) /\ -. 9 e. Prime ) <-> -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) | 
						
							| 46 | 44 45 | mpbi |  |-  -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) | 
						
							| 47 | 20 46 | pm3.2i |  |-  ( 9 e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) | 
						
							| 48 | 2 12 47 | ceqsexv2d |  |-  E. p ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) | 
						
							| 49 |  | df-rex |  |-  ( E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> E. p ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) | 
						
							| 50 | 48 49 | mpbir |  |-  E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) |