Step |
Hyp |
Ref |
Expression |
1 |
|
9nn |
|- 9 e. NN |
2 |
1
|
elexi |
|- 9 e. _V |
3 |
|
eleq1 |
|- ( p = 9 -> ( p e. ( ZZ>= ` 3 ) <-> 9 e. ( ZZ>= ` 3 ) ) ) |
4 |
|
oveq2 |
|- ( p = 9 -> ( 8 ^ p ) = ( 8 ^ 9 ) ) |
5 |
|
id |
|- ( p = 9 -> p = 9 ) |
6 |
4 5
|
oveq12d |
|- ( p = 9 -> ( ( 8 ^ p ) mod p ) = ( ( 8 ^ 9 ) mod 9 ) ) |
7 |
|
oveq2 |
|- ( p = 9 -> ( 8 mod p ) = ( 8 mod 9 ) ) |
8 |
6 7
|
eqeq12d |
|- ( p = 9 -> ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) <-> ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) ) ) |
9 |
|
eleq1 |
|- ( p = 9 -> ( p e. Prime <-> 9 e. Prime ) ) |
10 |
8 9
|
imbi12d |
|- ( p = 9 -> ( ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) |
11 |
10
|
notbid |
|- ( p = 9 -> ( -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) |
12 |
3 11
|
anbi12d |
|- ( p = 9 -> ( ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) <-> ( 9 e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) ) ) |
13 |
|
3z |
|- 3 e. ZZ |
14 |
1
|
nnzi |
|- 9 e. ZZ |
15 |
|
3re |
|- 3 e. RR |
16 |
|
9re |
|- 9 e. RR |
17 |
|
3lt9 |
|- 3 < 9 |
18 |
15 16 17
|
ltleii |
|- 3 <_ 9 |
19 |
|
eluz2 |
|- ( 9 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 9 e. ZZ /\ 3 <_ 9 ) ) |
20 |
13 14 18 19
|
mpbir3an |
|- 9 e. ( ZZ>= ` 3 ) |
21 |
|
8nn |
|- 8 e. NN |
22 |
|
8nn0 |
|- 8 e. NN0 |
23 |
|
0z |
|- 0 e. ZZ |
24 |
|
1nn0 |
|- 1 e. NN0 |
25 |
|
8exp8mod9 |
|- ( ( 8 ^ 8 ) mod 9 ) = 1 |
26 |
|
1re |
|- 1 e. RR |
27 |
|
nnrp |
|- ( 9 e. NN -> 9 e. RR+ ) |
28 |
1 27
|
ax-mp |
|- 9 e. RR+ |
29 |
|
0le1 |
|- 0 <_ 1 |
30 |
|
1lt9 |
|- 1 < 9 |
31 |
|
modid |
|- ( ( ( 1 e. RR /\ 9 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 9 ) ) -> ( 1 mod 9 ) = 1 ) |
32 |
26 28 29 30 31
|
mp4an |
|- ( 1 mod 9 ) = 1 |
33 |
25 32
|
eqtr4i |
|- ( ( 8 ^ 8 ) mod 9 ) = ( 1 mod 9 ) |
34 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
35 |
|
8cn |
|- 8 e. CC |
36 |
35
|
addid2i |
|- ( 0 + 8 ) = 8 |
37 |
|
9cn |
|- 9 e. CC |
38 |
37
|
mul02i |
|- ( 0 x. 9 ) = 0 |
39 |
38
|
oveq1i |
|- ( ( 0 x. 9 ) + 8 ) = ( 0 + 8 ) |
40 |
35
|
mulid2i |
|- ( 1 x. 8 ) = 8 |
41 |
36 39 40
|
3eqtr4i |
|- ( ( 0 x. 9 ) + 8 ) = ( 1 x. 8 ) |
42 |
1 21 22 23 24 22 33 34 41
|
modxp1i |
|- ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) |
43 |
|
9nprm |
|- -. 9 e. Prime |
44 |
42 43
|
pm3.2i |
|- ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) /\ -. 9 e. Prime ) |
45 |
|
annim |
|- ( ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) /\ -. 9 e. Prime ) <-> -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) |
46 |
44 45
|
mpbi |
|- -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) |
47 |
20 46
|
pm3.2i |
|- ( 9 e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ 9 ) mod 9 ) = ( 8 mod 9 ) -> 9 e. Prime ) ) |
48 |
2 12 47
|
ceqsexv2d |
|- E. p ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) |
49 |
|
df-rex |
|- ( E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) <-> E. p ( p e. ( ZZ>= ` 3 ) /\ -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) ) ) |
50 |
48 49
|
mpbir |
|- E. p e. ( ZZ>= ` 3 ) -. ( ( ( 8 ^ p ) mod p ) = ( 8 mod p ) -> p e. Prime ) |