Metamath Proof Explorer


Theorem dfxor5

Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion dfxor5
|- ( ( ph \/_ ps ) <-> -. ( ( ph -> -. ps ) -> -. ( -. ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 dfxor4
 |-  ( ( ph \/_ ps ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) )
2 con2b
 |-  ( ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) <-> ( ( ph -> -. ps ) -> -. ( -. ph -> ps ) ) )
3 1 2 xchbinx
 |-  ( ( ph \/_ ps ) <-> -. ( ( ph -> -. ps ) -> -. ( -. ph -> ps ) ) )