Metamath Proof Explorer


Theorem dfxor5

Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion dfxor5 ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 dfxor4 ( ( 𝜑𝜓 ) ↔ ¬ ( ( ¬ 𝜑𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) )
2 con2b ( ( ( ¬ 𝜑𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑𝜓 ) ) )
3 1 2 xchbinx ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑𝜓 ) ) )