Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfxor5 | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfxor4 | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( ( ¬ 𝜑 → 𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ) | |
2 | con2b | ⊢ ( ( ( ¬ 𝜑 → 𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑 → 𝜓 ) ) ) | |
3 | 1 2 | xchbinx | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( ( 𝜑 → ¬ 𝜓 ) → ¬ ( ¬ 𝜑 → 𝜓 ) ) ) |