Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfxor4 | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( ( ¬ 𝜑 → 𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor2 | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
3 | imnan | ⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
4 | 3 | bicomi | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜓 ) ) |
5 | 2 4 | anbi12i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ) |
6 | df-an | ⊢ ( ( ( ¬ 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ¬ ( ( ¬ 𝜑 → 𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ) | |
7 | 1 5 6 | 3bitri | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( ( ¬ 𝜑 → 𝜓 ) → ¬ ( 𝜑 → ¬ 𝜓 ) ) ) |