Metamath Proof Explorer


Theorem dfxor4

Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion dfxor4 φ ψ ¬ ¬ φ ψ ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 xor2 φ ψ φ ψ ¬ φ ψ
2 df-or φ ψ ¬ φ ψ
3 imnan φ ¬ ψ ¬ φ ψ
4 3 bicomi ¬ φ ψ φ ¬ ψ
5 2 4 anbi12i φ ψ ¬ φ ψ ¬ φ ψ φ ¬ ψ
6 df-an ¬ φ ψ φ ¬ ψ ¬ ¬ φ ψ ¬ φ ¬ ψ
7 1 5 6 3bitri φ ψ ¬ ¬ φ ψ ¬ φ ¬ ψ