Step |
Hyp |
Ref |
Expression |
1 |
|
xor2 |
|- ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) ) |
2 |
|
df-or |
|- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
3 |
|
imnan |
|- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |
4 |
3
|
bicomi |
|- ( -. ( ph /\ ps ) <-> ( ph -> -. ps ) ) |
5 |
2 4
|
anbi12i |
|- ( ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) <-> ( ( -. ph -> ps ) /\ ( ph -> -. ps ) ) ) |
6 |
|
df-an |
|- ( ( ( -. ph -> ps ) /\ ( ph -> -. ps ) ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) ) |
7 |
1 5 6
|
3bitri |
|- ( ( ph \/_ ps ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) ) |