Metamath Proof Explorer


Theorem dfxor4

Description: Express exclusive-or in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion dfxor4
|- ( ( ph \/_ ps ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) )

Proof

Step Hyp Ref Expression
1 xor2
 |-  ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )
2 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
3 imnan
 |-  ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) )
4 3 bicomi
 |-  ( -. ( ph /\ ps ) <-> ( ph -> -. ps ) )
5 2 4 anbi12i
 |-  ( ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) <-> ( ( -. ph -> ps ) /\ ( ph -> -. ps ) ) )
6 df-an
 |-  ( ( ( -. ph -> ps ) /\ ( ph -> -. ps ) ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) )
7 1 5 6 3bitri
 |-  ( ( ph \/_ ps ) <-> -. ( ( -. ph -> ps ) -> -. ( ph -> -. ps ) ) )