Description: Express triple-or in terms of implication and negation. Statement in Frege1879 p. 11. (Contributed by RP, 25-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df3or2 | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
2 | df-or | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ) | |
3 | ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) | |
4 | 3 | imbi1i | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ) |
5 | impexp | ⊢ ( ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) | |
6 | 4 5 | bitri | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) |
7 | 2 6 | bitri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) |
8 | 1 7 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) |