Metamath Proof Explorer


Theorem df3or2

Description: Express triple-or in terms of implication and negation. Statement in Frege1879 p. 11. (Contributed by RP, 25-Jul-2020)

Ref Expression
Assertion df3or2 ( ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
2 df-or ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) → 𝜒 ) )
3 ioran ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) )
4 3 imbi1i ( ( ¬ ( 𝜑𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) )
5 impexp ( ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) ) )
6 4 5 bitri ( ( ¬ ( 𝜑𝜓 ) → 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) ) )
7 2 6 bitri ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) ) )
8 1 7 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( ¬ 𝜑 → ( ¬ 𝜓𝜒 ) ) )