Metamath Proof Explorer


Theorem df3or2

Description: Express triple-or in terms of implication and negation. Statement in Frege1879 p. 11. (Contributed by RP, 25-Jul-2020)

Ref Expression
Assertion df3or2 φ ψ χ ¬ φ ¬ ψ χ

Proof

Step Hyp Ref Expression
1 df-3or φ ψ χ φ ψ χ
2 df-or φ ψ χ ¬ φ ψ χ
3 ioran ¬ φ ψ ¬ φ ¬ ψ
4 3 imbi1i ¬ φ ψ χ ¬ φ ¬ ψ χ
5 impexp ¬ φ ¬ ψ χ ¬ φ ¬ ψ χ
6 4 5 bitri ¬ φ ψ χ ¬ φ ¬ ψ χ
7 2 6 bitri φ ψ χ ¬ φ ¬ ψ χ
8 1 7 bitri φ ψ χ ¬ φ ¬ ψ χ