| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihord2.b |
|- B = ( Base ` K ) |
| 2 |
|
dihord2.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihord2.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dihord2.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
dihord2.a |
|- A = ( Atoms ` K ) |
| 6 |
|
dihord2.h |
|- H = ( LHyp ` K ) |
| 7 |
|
dihord2.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 8 |
|
dihord2.J |
|- J = ( ( DIsoC ` K ) ` W ) |
| 9 |
|
dihord2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 10 |
|
dihord2.s |
|- .(+) = ( LSSum ` U ) |
| 11 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 12 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 13 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
| 14 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
| 15 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 16 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 17 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = N ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = N ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
dihord2pre2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( Q .\/ ( X ./\ W ) ) = X /\ ( N .\/ ( Y ./\ W ) ) = Y /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) ) -> ( Q .\/ ( X ./\ W ) ) .<_ ( N .\/ ( Y ./\ W ) ) ) |
| 19 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( Q .\/ ( X ./\ W ) ) = X /\ ( N .\/ ( Y ./\ W ) ) = Y /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) ) -> ( Q .\/ ( X ./\ W ) ) = X ) |
| 20 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( Q .\/ ( X ./\ W ) ) = X /\ ( N .\/ ( Y ./\ W ) ) = Y /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) ) -> ( N .\/ ( Y ./\ W ) ) = Y ) |
| 21 |
18 19 20
|
3brtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( X e. B /\ Y e. B ) /\ ( ( Q .\/ ( X ./\ W ) ) = X /\ ( N .\/ ( Y ./\ W ) ) = Y /\ ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` N ) .(+) ( I ` ( Y ./\ W ) ) ) ) ) -> X .<_ Y ) |