Step |
Hyp |
Ref |
Expression |
1 |
|
dihord2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihord2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihord2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihord2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihord2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihord2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihord2.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihord2.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihord2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihord2.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) |
14 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑁 ) = ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑁 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
dihord2pre2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
19 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
20 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
21 |
18 19 20
|
3brtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑁 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑁 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑋 ≤ 𝑌 ) |