| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgeqiooicc.1 |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 2 |
|
ditgeqiooicc.2 |
|- ( ph -> A e. RR ) |
| 3 |
|
ditgeqiooicc.3 |
|- ( ph -> B e. RR ) |
| 4 |
|
ditgeqiooicc.4 |
|- ( ph -> A <_ B ) |
| 5 |
|
ditgeqiooicc.5 |
|- ( ph -> F : ( A (,) B ) --> RR ) |
| 6 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 7 |
6
|
sseli |
|- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 10 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
| 11 |
9
|
rexrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR* ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR ) |
| 13 |
12
|
rexrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR* ) |
| 14 |
|
elioo2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,) B ) <-> ( x e. RR /\ A < x /\ x < B ) ) ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x e. ( A (,) B ) <-> ( x e. RR /\ A < x /\ x < B ) ) ) |
| 16 |
10 15
|
mpbid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x e. RR /\ A < x /\ x < B ) ) |
| 17 |
16
|
simp2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 18 |
9 17
|
gtned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 19 |
18
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 20 |
19
|
iffalsed |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 21 |
16
|
simp1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 22 |
16
|
simp3d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 23 |
21 22
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
| 24 |
23
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
| 25 |
24
|
iffalsed |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 26 |
20 25
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 27 |
5
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. RR ) |
| 28 |
26 27
|
eqeltrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 29 |
1
|
fvmpt2 |
|- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 30 |
8 28 29
|
syl2anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 31 |
30 20 25
|
3eqtrrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) = ( G ` x ) ) |
| 32 |
31
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 33 |
4
|
ditgpos |
|- ( ph -> S_ [ A -> B ] ( F ` x ) _d x = S. ( A (,) B ) ( F ` x ) _d x ) |
| 34 |
4
|
ditgpos |
|- ( ph -> S_ [ A -> B ] ( G ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 35 |
32 33 34
|
3eqtr4d |
|- ( ph -> S_ [ A -> B ] ( F ` x ) _d x = S_ [ A -> B ] ( G ` x ) _d x ) |