Metamath Proof Explorer


Theorem dmatALTbasel

Description: An element of the base set of the algebra of N x N diagonal matrices over a ring R , i.e. an N x N diagonal matrix over the ring R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatALTval.a
|- A = ( N Mat R )
dmatALTval.b
|- B = ( Base ` A )
dmatALTval.0
|- .0. = ( 0g ` R )
dmatALTval.d
|- D = ( N DMatALT R )
Assertion dmatALTbasel
|- ( ( N e. Fin /\ R e. _V ) -> ( M e. ( Base ` D ) <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) )

Proof

Step Hyp Ref Expression
1 dmatALTval.a
 |-  A = ( N Mat R )
2 dmatALTval.b
 |-  B = ( Base ` A )
3 dmatALTval.0
 |-  .0. = ( 0g ` R )
4 dmatALTval.d
 |-  D = ( N DMatALT R )
5 1 2 3 4 dmatALTbas
 |-  ( ( N e. Fin /\ R e. _V ) -> ( Base ` D ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } )
6 5 eleq2d
 |-  ( ( N e. Fin /\ R e. _V ) -> ( M e. ( Base ` D ) <-> M e. { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) )
7 oveq
 |-  ( m = M -> ( i m j ) = ( i M j ) )
8 7 eqeq1d
 |-  ( m = M -> ( ( i m j ) = .0. <-> ( i M j ) = .0. ) )
9 8 imbi2d
 |-  ( m = M -> ( ( i =/= j -> ( i m j ) = .0. ) <-> ( i =/= j -> ( i M j ) = .0. ) ) )
10 9 2ralbidv
 |-  ( m = M -> ( A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) <-> A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) )
11 10 elrab
 |-  ( M e. { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) )
12 6 11 bitrdi
 |-  ( ( N e. Fin /\ R e. _V ) -> ( M e. ( Base ` D ) <-> ( M e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) )