| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmdbr |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) | 
						
							| 2 |  | chincl |  |-  ( ( x e. CH /\ A e. CH ) -> ( x i^i A ) e. CH ) | 
						
							| 3 | 2 | ancoms |  |-  ( ( A e. CH /\ x e. CH ) -> ( x i^i A ) e. CH ) | 
						
							| 4 | 3 | adantlr |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( x i^i A ) e. CH ) | 
						
							| 5 |  | simplr |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> B e. CH ) | 
						
							| 6 |  | simpr |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> x e. CH ) | 
						
							| 7 |  | inss1 |  |-  ( x i^i A ) C_ x | 
						
							| 8 |  | chlub |  |-  ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) <-> ( ( x i^i A ) vH B ) C_ x ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) -> ( ( x i^i A ) vH B ) C_ x ) ) | 
						
							| 10 | 7 9 | mpani |  |-  ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) | 
						
							| 11 | 4 5 6 10 | syl3anc |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) | 
						
							| 12 |  | simpll |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> A e. CH ) | 
						
							| 13 |  | inss2 |  |-  ( x i^i A ) C_ A | 
						
							| 14 |  | chlej1 |  |-  ( ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) /\ ( x i^i A ) C_ A ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) | 
						
							| 16 | 4 12 5 15 | syl3anc |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) | 
						
							| 17 | 11 16 | jctird |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) ) ) | 
						
							| 18 |  | ssin |  |-  ( ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) <-> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) | 
						
							| 19 | 17 18 | imbitrdi |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) ) | 
						
							| 20 |  | eqss |  |-  ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) /\ ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) | 
						
							| 21 | 20 | baib |  |-  ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) | 
						
							| 22 | 19 21 | syl6 |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) | 
						
							| 23 | 22 | pm5.74d |  |-  ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) | 
						
							| 24 | 23 | ralbidva |  |-  ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) | 
						
							| 25 | 1 24 | bitrd |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |