Metamath Proof Explorer


Theorem dmdoc1i

Description: Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis mdoc1.1
|- A e. CH
Assertion dmdoc1i
|- A MH* ( _|_ ` A )

Proof

Step Hyp Ref Expression
1 mdoc1.1
 |-  A e. CH
2 1 cmidi
 |-  A C_H A
3 1 1 2 cmcm2ii
 |-  A C_H ( _|_ ` A )
4 1 choccli
 |-  ( _|_ ` A ) e. CH
5 1 4 cmdmdi
 |-  ( A C_H ( _|_ ` A ) -> A MH* ( _|_ ` A ) )
6 3 5 ax-mp
 |-  A MH* ( _|_ ` A )