| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsp.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dochsp.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 4 |
|
dochsp.v |
|- V = ( Base ` U ) |
| 5 |
|
dochsp.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dochsp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
dochsp.x |
|- ( ph -> X C_ V ) |
| 8 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 9 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 10 |
1 2 4 9 3
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. ( LSubSp ` U ) ) |
| 11 |
6 7 10
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. ( LSubSp ` U ) ) |
| 12 |
9 5
|
lspid |
|- ( ( U e. LMod /\ ( ._|_ ` X ) e. ( LSubSp ` U ) ) -> ( N ` ( ._|_ ` X ) ) = ( ._|_ ` X ) ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ph -> ( N ` ( ._|_ ` X ) ) = ( ._|_ ` X ) ) |
| 14 |
1 2 3 4 5 6 7
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` X ) ) = ( ._|_ ` X ) ) |
| 15 |
13 14
|
eqtr4d |
|- ( ph -> ( N ` ( ._|_ ` X ) ) = ( ._|_ ` ( N ` X ) ) ) |