| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp2lt.a |  |-  A e. NN0 | 
						
							| 2 |  | dp2lt.b |  |-  B e. RR+ | 
						
							| 3 |  | dp2ltsuc.1 |  |-  B < ; 1 0 | 
						
							| 4 |  | dp2ltsuc.2 |  |-  ( A + 1 ) = C | 
						
							| 5 |  | rpre |  |-  ( B e. RR+ -> B e. RR ) | 
						
							| 6 | 2 5 | ax-mp |  |-  B e. RR | 
						
							| 7 |  | 10re |  |-  ; 1 0 e. RR | 
						
							| 8 |  | 10pos |  |-  0 < ; 1 0 | 
						
							| 9 | 6 7 7 8 | ltdiv1ii |  |-  ( B < ; 1 0 <-> ( B / ; 1 0 ) < ( ; 1 0 / ; 1 0 ) ) | 
						
							| 10 | 3 9 | mpbi |  |-  ( B / ; 1 0 ) < ( ; 1 0 / ; 1 0 ) | 
						
							| 11 | 7 | recni |  |-  ; 1 0 e. CC | 
						
							| 12 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 13 | 12 | nnne0i |  |-  ; 1 0 =/= 0 | 
						
							| 14 | 11 13 | dividi |  |-  ( ; 1 0 / ; 1 0 ) = 1 | 
						
							| 15 | 10 14 | breqtri |  |-  ( B / ; 1 0 ) < 1 | 
						
							| 16 | 6 7 13 | redivcli |  |-  ( B / ; 1 0 ) e. RR | 
						
							| 17 |  | 1re |  |-  1 e. RR | 
						
							| 18 | 1 | nn0rei |  |-  A e. RR | 
						
							| 19 | 16 17 18 | ltadd2i |  |-  ( ( B / ; 1 0 ) < 1 <-> ( A + ( B / ; 1 0 ) ) < ( A + 1 ) ) | 
						
							| 20 | 15 19 | mpbi |  |-  ( A + ( B / ; 1 0 ) ) < ( A + 1 ) | 
						
							| 21 |  | df-dp2 |  |-  _ A B = ( A + ( B / ; 1 0 ) ) | 
						
							| 22 | 4 | eqcomi |  |-  C = ( A + 1 ) | 
						
							| 23 | 20 21 22 | 3brtr4i |  |-  _ A B < C |