| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp2lt.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dp2lt.b | ⊢ 𝐵  ∈  ℝ+ | 
						
							| 3 |  | dp2ltsuc.1 | ⊢ 𝐵  <  ; 1 0 | 
						
							| 4 |  | dp2ltsuc.2 | ⊢ ( 𝐴  +  1 )  =  𝐶 | 
						
							| 5 |  | rpre | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 2 5 | ax-mp | ⊢ 𝐵  ∈  ℝ | 
						
							| 7 |  | 10re | ⊢ ; 1 0  ∈  ℝ | 
						
							| 8 |  | 10pos | ⊢ 0  <  ; 1 0 | 
						
							| 9 | 6 7 7 8 | ltdiv1ii | ⊢ ( 𝐵  <  ; 1 0  ↔  ( 𝐵  /  ; 1 0 )  <  ( ; 1 0  /  ; 1 0 ) ) | 
						
							| 10 | 3 9 | mpbi | ⊢ ( 𝐵  /  ; 1 0 )  <  ( ; 1 0  /  ; 1 0 ) | 
						
							| 11 | 7 | recni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 12 |  | 10nn | ⊢ ; 1 0  ∈  ℕ | 
						
							| 13 | 12 | nnne0i | ⊢ ; 1 0  ≠  0 | 
						
							| 14 | 11 13 | dividi | ⊢ ( ; 1 0  /  ; 1 0 )  =  1 | 
						
							| 15 | 10 14 | breqtri | ⊢ ( 𝐵  /  ; 1 0 )  <  1 | 
						
							| 16 | 6 7 13 | redivcli | ⊢ ( 𝐵  /  ; 1 0 )  ∈  ℝ | 
						
							| 17 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 18 | 1 | nn0rei | ⊢ 𝐴  ∈  ℝ | 
						
							| 19 | 16 17 18 | ltadd2i | ⊢ ( ( 𝐵  /  ; 1 0 )  <  1  ↔  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  <  ( 𝐴  +  1 ) ) | 
						
							| 20 | 15 19 | mpbi | ⊢ ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  <  ( 𝐴  +  1 ) | 
						
							| 21 |  | df-dp2 | ⊢ _ 𝐴 𝐵  =  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 22 | 4 | eqcomi | ⊢ 𝐶  =  ( 𝐴  +  1 ) | 
						
							| 23 | 20 21 22 | 3brtr4i | ⊢ _ 𝐴 𝐵  <  𝐶 |