Step |
Hyp |
Ref |
Expression |
1 |
|
dp2lt.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dp2lt.b |
⊢ 𝐵 ∈ ℝ+ |
3 |
|
dp2ltsuc.1 |
⊢ 𝐵 < ; 1 0 |
4 |
|
dp2ltsuc.2 |
⊢ ( 𝐴 + 1 ) = 𝐶 |
5 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
6 |
2 5
|
ax-mp |
⊢ 𝐵 ∈ ℝ |
7 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
8 |
|
10pos |
⊢ 0 < ; 1 0 |
9 |
6 7 7 8
|
ltdiv1ii |
⊢ ( 𝐵 < ; 1 0 ↔ ( 𝐵 / ; 1 0 ) < ( ; 1 0 / ; 1 0 ) ) |
10 |
3 9
|
mpbi |
⊢ ( 𝐵 / ; 1 0 ) < ( ; 1 0 / ; 1 0 ) |
11 |
7
|
recni |
⊢ ; 1 0 ∈ ℂ |
12 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
13 |
12
|
nnne0i |
⊢ ; 1 0 ≠ 0 |
14 |
11 13
|
dividi |
⊢ ( ; 1 0 / ; 1 0 ) = 1 |
15 |
10 14
|
breqtri |
⊢ ( 𝐵 / ; 1 0 ) < 1 |
16 |
6 7 13
|
redivcli |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℝ |
17 |
|
1re |
⊢ 1 ∈ ℝ |
18 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
19 |
16 17 18
|
ltadd2i |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) ) |
20 |
15 19
|
mpbi |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) |
21 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
22 |
4
|
eqcomi |
⊢ 𝐶 = ( 𝐴 + 1 ) |
23 |
20 21 22
|
3brtr4i |
⊢ _ 𝐴 𝐵 < 𝐶 |