| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dp2lt.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
dp2lt.b |
⊢ 𝐵 ∈ ℝ+ |
| 3 |
|
dp2ltc.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
dp2ltc.d |
⊢ 𝐷 ∈ ℝ+ |
| 5 |
|
dp2ltc.s |
⊢ 𝐵 < ; 1 0 |
| 6 |
|
dp2ltc.l |
⊢ 𝐴 < 𝐶 |
| 7 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 8 |
7 2
|
sselii |
⊢ 𝐵 ∈ ℝ |
| 9 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 10 |
|
10pos |
⊢ 0 < ; 1 0 |
| 11 |
|
elrp |
⊢ ( ; 1 0 ∈ ℝ+ ↔ ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) ) |
| 12 |
9 10 11
|
mpbir2an |
⊢ ; 1 0 ∈ ℝ+ |
| 13 |
|
divlt1lt |
⊢ ( ( 𝐵 ∈ ℝ ∧ ; 1 0 ∈ ℝ+ ) → ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) ) |
| 14 |
8 12 13
|
mp2an |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ 𝐵 < ; 1 0 ) |
| 15 |
5 14
|
mpbir |
⊢ ( 𝐵 / ; 1 0 ) < 1 |
| 16 |
9 10
|
gt0ne0ii |
⊢ ; 1 0 ≠ 0 |
| 17 |
8 9 16
|
redivcli |
⊢ ( 𝐵 / ; 1 0 ) ∈ ℝ |
| 18 |
|
1re |
⊢ 1 ∈ ℝ |
| 19 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
| 20 |
|
ltadd2 |
⊢ ( ( ( 𝐵 / ; 1 0 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 / ; 1 0 ) < 1 ↔ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) ) ) |
| 21 |
17 18 19 20
|
mp3an |
⊢ ( ( 𝐵 / ; 1 0 ) < 1 ↔ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) ) |
| 22 |
15 21
|
mpbi |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) |
| 23 |
1
|
nn0zi |
⊢ 𝐴 ∈ ℤ |
| 24 |
3
|
nn0zi |
⊢ 𝐶 ∈ ℤ |
| 25 |
|
zltp1le |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 1 ) ≤ 𝐶 ) ) |
| 26 |
23 24 25
|
mp2an |
⊢ ( 𝐴 < 𝐶 ↔ ( 𝐴 + 1 ) ≤ 𝐶 ) |
| 27 |
6 26
|
mpbi |
⊢ ( 𝐴 + 1 ) ≤ 𝐶 |
| 28 |
19 17
|
readdcli |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ∈ ℝ |
| 29 |
19 18
|
readdcli |
⊢ ( 𝐴 + 1 ) ∈ ℝ |
| 30 |
3
|
nn0rei |
⊢ 𝐶 ∈ ℝ |
| 31 |
28 29 30
|
ltletri |
⊢ ( ( ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐶 ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < 𝐶 ) |
| 32 |
22 27 31
|
mp2an |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < 𝐶 |
| 33 |
4 12
|
pm3.2i |
⊢ ( 𝐷 ∈ ℝ+ ∧ ; 1 0 ∈ ℝ+ ) |
| 34 |
|
rpdivcl |
⊢ ( ( 𝐷 ∈ ℝ+ ∧ ; 1 0 ∈ ℝ+ ) → ( 𝐷 / ; 1 0 ) ∈ ℝ+ ) |
| 35 |
33 34
|
ax-mp |
⊢ ( 𝐷 / ; 1 0 ) ∈ ℝ+ |
| 36 |
|
ltaddrp |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 / ; 1 0 ) ∈ ℝ+ ) → 𝐶 < ( 𝐶 + ( 𝐷 / ; 1 0 ) ) ) |
| 37 |
30 35 36
|
mp2an |
⊢ 𝐶 < ( 𝐶 + ( 𝐷 / ; 1 0 ) ) |
| 38 |
7 4
|
sselii |
⊢ 𝐷 ∈ ℝ |
| 39 |
38 9 16
|
redivcli |
⊢ ( 𝐷 / ; 1 0 ) ∈ ℝ |
| 40 |
30 39
|
readdcli |
⊢ ( 𝐶 + ( 𝐷 / ; 1 0 ) ) ∈ ℝ |
| 41 |
28 30 40
|
lttri |
⊢ ( ( ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < 𝐶 ∧ 𝐶 < ( 𝐶 + ( 𝐷 / ; 1 0 ) ) ) → ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐶 + ( 𝐷 / ; 1 0 ) ) ) |
| 42 |
32 37 41
|
mp2an |
⊢ ( 𝐴 + ( 𝐵 / ; 1 0 ) ) < ( 𝐶 + ( 𝐷 / ; 1 0 ) ) |
| 43 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
| 44 |
|
df-dp2 |
⊢ _ 𝐶 𝐷 = ( 𝐶 + ( 𝐷 / ; 1 0 ) ) |
| 45 |
42 43 44
|
3brtr4i |
⊢ _ 𝐴 𝐵 < _ 𝐶 𝐷 |