| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp3mul10.a |  |-  A e. NN0 | 
						
							| 2 |  | dp3mul10.b |  |-  B e. NN0 | 
						
							| 3 |  | dp3mul10.c |  |-  C e. RR | 
						
							| 4 | 2 | nn0rei |  |-  B e. RR | 
						
							| 5 |  | dp2cl |  |-  ( ( B e. RR /\ C e. RR ) -> _ B C e. RR ) | 
						
							| 6 | 4 3 5 | mp2an |  |-  _ B C e. RR | 
						
							| 7 | 1 6 | dpmul10 |  |-  ( ( A . _ B C ) x. ; 1 0 ) = ; A _ B C | 
						
							| 8 |  | dfdec10 |  |-  ; A _ B C = ( ( ; 1 0 x. A ) + _ B C ) | 
						
							| 9 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 10 | 9 | nncni |  |-  ; 1 0 e. CC | 
						
							| 11 | 1 | nn0cni |  |-  A e. CC | 
						
							| 12 | 10 11 | mulcli |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 13 | 4 | recni |  |-  B e. CC | 
						
							| 14 | 3 | recni |  |-  C e. CC | 
						
							| 15 | 9 | nnne0i |  |-  ; 1 0 =/= 0 | 
						
							| 16 | 14 10 15 | divcli |  |-  ( C / ; 1 0 ) e. CC | 
						
							| 17 | 12 13 16 | addassi |  |-  ( ( ( ; 1 0 x. A ) + B ) + ( C / ; 1 0 ) ) = ( ( ; 1 0 x. A ) + ( B + ( C / ; 1 0 ) ) ) | 
						
							| 18 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 19 | 18 | oveq1i |  |-  ( ; A B + ( C / ; 1 0 ) ) = ( ( ( ; 1 0 x. A ) + B ) + ( C / ; 1 0 ) ) | 
						
							| 20 |  | df-dp2 |  |-  _ B C = ( B + ( C / ; 1 0 ) ) | 
						
							| 21 | 20 | oveq2i |  |-  ( ( ; 1 0 x. A ) + _ B C ) = ( ( ; 1 0 x. A ) + ( B + ( C / ; 1 0 ) ) ) | 
						
							| 22 | 17 19 21 | 3eqtr4ri |  |-  ( ( ; 1 0 x. A ) + _ B C ) = ( ; A B + ( C / ; 1 0 ) ) | 
						
							| 23 | 1 2 | deccl |  |-  ; A B e. NN0 | 
						
							| 24 | 23 3 | dpval2 |  |-  ( ; A B . C ) = ( ; A B + ( C / ; 1 0 ) ) | 
						
							| 25 | 22 24 | eqtr4i |  |-  ( ( ; 1 0 x. A ) + _ B C ) = ( ; A B . C ) | 
						
							| 26 | 7 8 25 | 3eqtri |  |-  ( ( A . _ B C ) x. ; 1 0 ) = ( ; A B . C ) |