| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpmul1000.a |  |-  A e. NN0 | 
						
							| 2 |  | dpmul1000.b |  |-  B e. NN0 | 
						
							| 3 |  | dpmul1000.c |  |-  C e. NN0 | 
						
							| 4 |  | dpmul1000.d |  |-  D e. RR | 
						
							| 5 | 2 | nn0rei |  |-  B e. RR | 
						
							| 6 | 3 | nn0rei |  |-  C e. RR | 
						
							| 7 |  | dp2cl |  |-  ( ( C e. RR /\ D e. RR ) -> _ C D e. RR ) | 
						
							| 8 | 6 4 7 | mp2an |  |-  _ C D e. RR | 
						
							| 9 |  | dp2cl |  |-  ( ( B e. RR /\ _ C D e. RR ) -> _ B _ C D e. RR ) | 
						
							| 10 | 5 8 9 | mp2an |  |-  _ B _ C D e. RR | 
						
							| 11 |  | dpcl |  |-  ( ( A e. NN0 /\ _ B _ C D e. RR ) -> ( A . _ B _ C D ) e. RR ) | 
						
							| 12 | 1 10 11 | mp2an |  |-  ( A . _ B _ C D ) e. RR | 
						
							| 13 | 12 | recni |  |-  ( A . _ B _ C D ) e. CC | 
						
							| 14 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 15 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 16 | 14 15 | deccl |  |-  ; ; 1 0 0 e. NN0 | 
						
							| 17 | 16 | nn0cni |  |-  ; ; 1 0 0 e. CC | 
						
							| 18 | 14 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 19 | 13 17 18 | mulassi |  |-  ( ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) x. ; 1 0 ) = ( ( A . _ B _ C D ) x. ( ; ; 1 0 0 x. ; 1 0 ) ) | 
						
							| 20 | 1 2 8 | dpmul100 |  |-  ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) = ; ; A B _ C D | 
						
							| 21 | 20 | oveq1i |  |-  ( ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) x. ; 1 0 ) = ( ; ; A B _ C D x. ; 1 0 ) | 
						
							| 22 | 16 | dec0u |  |-  ( ; 1 0 x. ; ; 1 0 0 ) = ; ; ; 1 0 0 0 | 
						
							| 23 | 18 17 22 | mulcomli |  |-  ( ; ; 1 0 0 x. ; 1 0 ) = ; ; ; 1 0 0 0 | 
						
							| 24 | 23 | oveq2i |  |-  ( ( A . _ B _ C D ) x. ( ; ; 1 0 0 x. ; 1 0 ) ) = ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) | 
						
							| 25 | 19 21 24 | 3eqtr3i |  |-  ( ; ; A B _ C D x. ; 1 0 ) = ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) | 
						
							| 26 |  | dfdec10 |  |-  ; ; A B _ C D = ( ( ; 1 0 x. ; A B ) + _ C D ) | 
						
							| 27 | 26 | oveq1i |  |-  ( ; ; A B _ C D x. ; 1 0 ) = ( ( ( ; 1 0 x. ; A B ) + _ C D ) x. ; 1 0 ) | 
						
							| 28 | 1 2 | deccl |  |-  ; A B e. NN0 | 
						
							| 29 | 28 | nn0cni |  |-  ; A B e. CC | 
						
							| 30 | 18 29 | mulcli |  |-  ( ; 1 0 x. ; A B ) e. CC | 
						
							| 31 | 8 | recni |  |-  _ C D e. CC | 
						
							| 32 | 30 31 18 | adddiri |  |-  ( ( ( ; 1 0 x. ; A B ) + _ C D ) x. ; 1 0 ) = ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) | 
						
							| 33 | 28 3 4 | dfdec100 |  |-  ; ; ; A B C D = ( ( ; ; 1 0 0 x. ; A B ) + ; C D ) | 
						
							| 34 | 14 | dec0u |  |-  ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 | 
						
							| 35 | 34 | oveq1i |  |-  ( ( ; 1 0 x. ; 1 0 ) x. ; A B ) = ( ; ; 1 0 0 x. ; A B ) | 
						
							| 36 | 18 18 29 | mul32i |  |-  ( ( ; 1 0 x. ; 1 0 ) x. ; A B ) = ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) | 
						
							| 37 | 35 36 | eqtr3i |  |-  ( ; ; 1 0 0 x. ; A B ) = ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) | 
						
							| 38 | 3 4 | dpmul10 |  |-  ( ( C . D ) x. ; 1 0 ) = ; C D | 
						
							| 39 |  | dpval |  |-  ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) = _ C D ) | 
						
							| 40 | 3 4 39 | mp2an |  |-  ( C . D ) = _ C D | 
						
							| 41 | 40 | oveq1i |  |-  ( ( C . D ) x. ; 1 0 ) = ( _ C D x. ; 1 0 ) | 
						
							| 42 | 38 41 | eqtr3i |  |-  ; C D = ( _ C D x. ; 1 0 ) | 
						
							| 43 | 37 42 | oveq12i |  |-  ( ( ; ; 1 0 0 x. ; A B ) + ; C D ) = ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) | 
						
							| 44 | 33 43 | eqtr2i |  |-  ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) = ; ; ; A B C D | 
						
							| 45 | 27 32 44 | 3eqtri |  |-  ( ; ; A B _ C D x. ; 1 0 ) = ; ; ; A B C D | 
						
							| 46 | 25 45 | eqtr3i |  |-  ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) = ; ; ; A B C D |