| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp3mul10.a |  |-  A e. NN0 | 
						
							| 2 |  | dp3mul10.b |  |-  B e. NN0 | 
						
							| 3 |  | dp3mul10.c |  |-  C e. RR | 
						
							| 4 | 2 | nn0rei |  |-  B e. RR | 
						
							| 5 |  | dp2cl |  |-  ( ( B e. RR /\ C e. RR ) -> _ B C e. RR ) | 
						
							| 6 | 4 3 5 | mp2an |  |-  _ B C e. RR | 
						
							| 7 | 1 6 | dpval2 |  |-  ( A . _ B C ) = ( A + ( _ B C / ; 1 0 ) ) | 
						
							| 8 | 1 | nn0cni |  |-  A e. CC | 
						
							| 9 | 6 | recni |  |-  _ B C e. CC | 
						
							| 10 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 11 | 10 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 12 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 13 | 12 | nnne0i |  |-  ; 1 0 =/= 0 | 
						
							| 14 | 9 11 13 | divcli |  |-  ( _ B C / ; 1 0 ) e. CC | 
						
							| 15 | 8 14 | addcli |  |-  ( A + ( _ B C / ; 1 0 ) ) e. CC | 
						
							| 16 | 7 15 | eqeltri |  |-  ( A . _ B C ) e. CC | 
						
							| 17 | 16 11 11 | mulassi |  |-  ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ( ( A . _ B C ) x. ( ; 1 0 x. ; 1 0 ) ) | 
						
							| 18 | 1 2 3 | dfdec100 |  |-  ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) | 
						
							| 19 | 11 8 11 | mul32i |  |-  ( ( ; 1 0 x. A ) x. ; 1 0 ) = ( ( ; 1 0 x. ; 1 0 ) x. A ) | 
						
							| 20 | 10 | dec0u |  |-  ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 | 
						
							| 21 | 20 | oveq1i |  |-  ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; ; 1 0 0 x. A ) | 
						
							| 22 | 19 21 | eqtri |  |-  ( ( ; 1 0 x. A ) x. ; 1 0 ) = ( ; ; 1 0 0 x. A ) | 
						
							| 23 | 2 3 | dpval3 |  |-  ( B . C ) = _ B C | 
						
							| 24 | 23 | oveq1i |  |-  ( ( B . C ) x. ; 1 0 ) = ( _ B C x. ; 1 0 ) | 
						
							| 25 | 2 3 | dpmul10 |  |-  ( ( B . C ) x. ; 1 0 ) = ; B C | 
						
							| 26 | 24 25 | eqtr3i |  |-  ( _ B C x. ; 1 0 ) = ; B C | 
						
							| 27 | 22 26 | oveq12i |  |-  ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) = ( ( ; ; 1 0 0 x. A ) + ; B C ) | 
						
							| 28 | 1 6 | dpmul10 |  |-  ( ( A . _ B C ) x. ; 1 0 ) = ; A _ B C | 
						
							| 29 |  | dfdec10 |  |-  ; A _ B C = ( ( ; 1 0 x. A ) + _ B C ) | 
						
							| 30 | 28 29 | eqtri |  |-  ( ( A . _ B C ) x. ; 1 0 ) = ( ( ; 1 0 x. A ) + _ B C ) | 
						
							| 31 | 30 | oveq1i |  |-  ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ( ( ( ; 1 0 x. A ) + _ B C ) x. ; 1 0 ) | 
						
							| 32 | 11 8 | mulcli |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 33 | 32 9 11 | adddiri |  |-  ( ( ( ; 1 0 x. A ) + _ B C ) x. ; 1 0 ) = ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) | 
						
							| 34 | 31 33 | eqtr2i |  |-  ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) = ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) | 
						
							| 35 | 18 27 34 | 3eqtr2ri |  |-  ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ; ; A B C | 
						
							| 36 | 20 | oveq2i |  |-  ( ( A . _ B C ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( A . _ B C ) x. ; ; 1 0 0 ) | 
						
							| 37 | 17 35 36 | 3eqtr3ri |  |-  ( ( A . _ B C ) x. ; ; 1 0 0 ) = ; ; A B C |