Description: Cancellation of a nonzero factor on the left for multiplication. ( mulcanad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmullcan.b | |- B = ( Base ` R ) |
|
| drngmullcan.0 | |- .0. = ( 0g ` R ) |
||
| drngmullcan.t | |- .x. = ( .r ` R ) |
||
| drngmullcan.r | |- ( ph -> R e. DivRing ) |
||
| drngmullcan.x | |- ( ph -> X e. B ) |
||
| drngmullcan.y | |- ( ph -> Y e. B ) |
||
| drngmullcan.z | |- ( ph -> Z e. B ) |
||
| drngmullcan.1 | |- ( ph -> Z =/= .0. ) |
||
| drngmullcan.2 | |- ( ph -> ( Z .x. X ) = ( Z .x. Y ) ) |
||
| Assertion | drngmullcan | |- ( ph -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmullcan.b | |- B = ( Base ` R ) |
|
| 2 | drngmullcan.0 | |- .0. = ( 0g ` R ) |
|
| 3 | drngmullcan.t | |- .x. = ( .r ` R ) |
|
| 4 | drngmullcan.r | |- ( ph -> R e. DivRing ) |
|
| 5 | drngmullcan.x | |- ( ph -> X e. B ) |
|
| 6 | drngmullcan.y | |- ( ph -> Y e. B ) |
|
| 7 | drngmullcan.z | |- ( ph -> Z e. B ) |
|
| 8 | drngmullcan.1 | |- ( ph -> Z =/= .0. ) |
|
| 9 | drngmullcan.2 | |- ( ph -> ( Z .x. X ) = ( Z .x. Y ) ) |
|
| 10 | 7 8 | eldifsnd | |- ( ph -> Z e. ( B \ { .0. } ) ) |
| 11 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
| 12 | 4 11 | syl | |- ( ph -> R e. Domn ) |
| 13 | 1 2 3 10 5 6 12 9 | domnlcan | |- ( ph -> X = Y ) |