Metamath Proof Explorer


Theorem drngmulrcan

Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmullcan.b
|- B = ( Base ` R )
drngmullcan.0
|- .0. = ( 0g ` R )
drngmullcan.t
|- .x. = ( .r ` R )
drngmullcan.r
|- ( ph -> R e. DivRing )
drngmullcan.x
|- ( ph -> X e. B )
drngmullcan.y
|- ( ph -> Y e. B )
drngmullcan.z
|- ( ph -> Z e. B )
drngmullcan.1
|- ( ph -> Z =/= .0. )
drngmulrcan.2
|- ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
Assertion drngmulrcan
|- ( ph -> X = Y )

Proof

Step Hyp Ref Expression
1 drngmullcan.b
 |-  B = ( Base ` R )
2 drngmullcan.0
 |-  .0. = ( 0g ` R )
3 drngmullcan.t
 |-  .x. = ( .r ` R )
4 drngmullcan.r
 |-  ( ph -> R e. DivRing )
5 drngmullcan.x
 |-  ( ph -> X e. B )
6 drngmullcan.y
 |-  ( ph -> Y e. B )
7 drngmullcan.z
 |-  ( ph -> Z e. B )
8 drngmullcan.1
 |-  ( ph -> Z =/= .0. )
9 drngmulrcan.2
 |-  ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
10 7 8 eldifsnd
 |-  ( ph -> Z e. ( B \ { .0. } ) )
11 drngdomn
 |-  ( R e. DivRing -> R e. Domn )
12 4 11 syl
 |-  ( ph -> R e. Domn )
13 1 2 3 5 6 10 12 9 domnrcan
 |-  ( ph -> X = Y )