Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024) (Proof shortened by SN, 25-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngmullcan.b | |- B = ( Base ` R ) |
|
drngmullcan.0 | |- .0. = ( 0g ` R ) |
||
drngmullcan.t | |- .x. = ( .r ` R ) |
||
drngmullcan.r | |- ( ph -> R e. DivRing ) |
||
drngmullcan.x | |- ( ph -> X e. B ) |
||
drngmullcan.y | |- ( ph -> Y e. B ) |
||
drngmullcan.z | |- ( ph -> Z e. B ) |
||
drngmullcan.1 | |- ( ph -> Z =/= .0. ) |
||
drngmulrcan.2 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
||
Assertion | drngmulrcan | |- ( ph -> X = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmullcan.b | |- B = ( Base ` R ) |
|
2 | drngmullcan.0 | |- .0. = ( 0g ` R ) |
|
3 | drngmullcan.t | |- .x. = ( .r ` R ) |
|
4 | drngmullcan.r | |- ( ph -> R e. DivRing ) |
|
5 | drngmullcan.x | |- ( ph -> X e. B ) |
|
6 | drngmullcan.y | |- ( ph -> Y e. B ) |
|
7 | drngmullcan.z | |- ( ph -> Z e. B ) |
|
8 | drngmullcan.1 | |- ( ph -> Z =/= .0. ) |
|
9 | drngmulrcan.2 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
|
10 | 7 8 | eldifsnd | |- ( ph -> Z e. ( B \ { .0. } ) ) |
11 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
12 | 4 11 | syl | |- ( ph -> R e. Domn ) |
13 | 1 2 3 5 6 10 12 9 | domnrcan | |- ( ph -> X = Y ) |